
An Execution Model for
Fine-Grained Parallelism in Ada

Luís Miguel Pinho, Brad Moore, Stephen Michell, S. Tucker Taft

Ada-Europe 2015, Madrid, Spain

Outline

• Review of the tasklet model

– History and status

• Tasklet execution model(s)

– Blocking issues

– To progress or not to progress

• Real-time

– The model

– Finer control of parallelization

• Open Issues

– After a few sessions at IRTAW

2June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015

Review of the model

• Based on the notion of a logical unit of potential
parallelism

– A lightweight task, denoted Tasklet
• When there is no parallelism, there is an implicit tasklet for the

Ada Task

– Tasklet creation is either explicit
• The programmer specifies algorithms with explicit parallel

constructs

– Or implicit
• The compiler itself generates the tasklets (e.g. parallelizing

subprogram calls)

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 3

Review of the model

• Separate the design of parallelism from the
implementation of parallel execution

– Allow parallelism design during the development process
without the need for profiling

– Compiler and runtime (with assisted profiling) knows best
how to map to the underlying HW

• Implicit parallelism

• More complex algorithms may require re-write

– Programmer writes code under a potentially parallel
assumption

» Actual execution can be sequential

• However, also consider the need of a model, where the
programmer specifies the details of the mapping, for analyzability

4June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015

Review of the model

• Restrictions on what the logical unit can be

– Several parallel frameworks use similar concepts
• Some provide a complete asynchronous approach

• Others are loosely defined, with a weak semantic or execution
model

– Ada must clearly have a well-defined model
• Tasklets are within Tasks

• With a strict fork-join model

• Tasklets inherit task attributes

– Priority, deadline

• Execution needs also to have a model

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 5

Review of the model

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015

task body My_Task is
begin
-- tasklet A, parent of B, C, F and G,

ancestor of D and E

parallel
-- tasklet B, child of A,

parent of D and E
parallel
-- D, child of B, descendent of A,

sibling of E

and
-- E, child of B, descendent of A,

sibling of D
end parallel;

and
-- tasklet C, child of A, sibling of B,

no relation to D and E
end parallel;

-- tasklet A again

for I in parallel 1..2 loop
-- compiler creates tasklets F and G,

child of A, no relation to B,C,D and E
end loop;

-- tasklet A again
end My_Task;

A

B C

F G

D E

6

Review of the model

• Transfer of control out of one parallel sequence (eg.
return, exit, goto, raise)

– initiates the aborting of the parallel sequences not yet
completed

• Once all other parallel sequences complete normally or abort, the
transfer of control takes place

– If multiple parallel sequences attempt a transfer of control
before completing

• one is chosen arbitrarily and the others are aborted

• Exceptions follow the same model

– Aborting a tasklet need not be preemptive, but
• Prevents initiation of tasklets which have not started and of

further nested parallel blocks/loops

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 7

Review of the model

• Shared variables

– Two actions occurring within two different parallel
sequences of the same parallel block/loop are not
automatically sequential

• Execution can be erroneous if these actions access the same
object (or a neighboring object that is not independently
addressable from the first object)

– New aspects may be specified to enable the static
detection of such problems at compile time

• (proposed) Global aspect to identify usage of global variables and
(proposed) Potentially_Blocking aspect to identify subprograms that use
constructs that are potentially blocking

• Compiler has information to determine whether two constructs
can be safely executed in parallel

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 8

Execution model

• Tasklets compete for the (finite) execution resources

– Necessary to provide the semantics of the execution
model

– Particularly important if blocking is to be allowed

• Implementations and HW differ significantly

– Goal is to provide a model which is independent of a
particular implementation

– The focus is then in specifying the perceived behavior that
an implementation (compiler and runtime) needs to
provide so that Task progress is guaranteed

• Without constraining how such implementation should be done

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 9

Execution model

• An executor is an entity which is able to carry the
execution of tasklets

– Most likely executors would be operating system threads,
but other approaches may be used

• Freedom to the implementers, allowing minimum functionality, without
full overhead associated with thread management

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 10

Execution model

• Tasklet execution is a limited form of
run-to-completion
– When a tasklet starts to be executed by one executor, it is

executed by this same executor until the tasklet finishes

• Simplicity, data locality

• Exception is only when tasklets block (more later)

– Run-to-completion does not mean that the tasklet will execute
uninterruptedly or that it will not dynamically change core

• The executor itself might be scheduled in a preemptive global
approach

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 11

Execution model

• The progress of a Task is defined based on the
execution of the tasklets
– A Task is progressing if at least one of its tasklet is being executed, or

ready to be executed

• Tasklets are considered to be blocked when they are waiting for a
resource, which is not an executor nor a core (e.g. waiting in an entry call)

• Higher priority / earlier deadline tasklets being executed do not impact
the model

• Important to understand the conditions which may lead
to a otherwise “correct” program to behave in a wrong
way

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 12

Execution model

• Potentially blocking operations

– Some parallel algorithms require co-ordination between
the potentially parallel tasklets

• Wavefront, pipelining, etc.

• Tasklets down the chain require data output by upstream tasklets

– Allowing tasklets to block may lead to wrong behavior
• Programmers write the parallel algorithms assuming infinite

parallelism

• Compiler may aggregate parallel computations in “chunks”

• Runtime may map tasklets to the same or different executors

– Risks of deadlock, depending on the tasklet allocation to the
underlying executor

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 13

Execution model

• Potentially blocking operations

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015

parallel

-- some operations

barrier.wait(3);

-- some operations

and

-- some operations

barrier.wait(3);

-- some operations

and

-- some operations

barrier.wait(3);

-- some operations

end parallel;

for I in parallel Range loop

if … then

obj.wait_for_my_data;

end if;

-- work on my data

end loop ;

If the tasklets are mapped to the same
executor, then it deadlocks

If the compiler “chunks”
in X tasklets < Range
then it deadlocks

14

Execution model

• Implementations must provide one class of behavior

– Immediate – immediate availability of an executor: if a
tasklet is ready and a core is available to execute it (either
idle or executing lower priority tasklets) then an executor
is immediately provided

– Eventual – availability of an executor: if a tasklet is ready
and a core is available to execute it (either idle or
executing lower priority tasklets) it is guaranteed that an
executor will eventually be provided

– Limited – even if cores are available, ready tasklets might
need to wait for an executor, and the runtime does not
guarantee that one will be eventually available

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 15

Execution model

• Blocking operations may be allowed if:

– Implementation guarantees that all tasklets will be
allowed to execute

• Immediate and eventual behaviors fulfil the requirement

• Limited model requires offline analysis to guarantee that the
number of available executors is always sufficient for the
maximum simultaneous demand

– Implementation ensures that the behavior is as if each call
to a potentially blocking operation was allocated to a
single tasklet

• The compiler generates individual tasklets when potentially
blocking operations are used

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 16

Execution model

• The model does not stipulate how an
implementation provides these guarantees

– Immediately providing an executor may requiring create
new executors unboundedly

– Blocked tasklets may require blocking the executor, or
saving and restoring tasklet state

– Implementations may use bounded or unbounded
executor pools

– Parent waiting for children executing may suspend or spin

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 17

Real-time

• As usual, real-time tasks map one-to-one with Ada
tasks

– The execution of the Ada task generates a recurrent graph
of tasklets

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 18

RT task

Real-time model

• Each Ada task has its specific executor pool

– Executors carry the same priority/deadline of the task and
(potentially) share budget quantum

• Offline analysis is used to determine the size of the executor pool

– Each task (and its DAG of tasklets) execute within the
same dispatching domain

– If priority/deadline boosting is required, e.g. within a
protected action, affects only the executor that is actually
executing in the action

• All other executors of the same task will continue at its base
priority/deadline

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 19

Real-time model

• The use of this model allows the application of state-
of-the-art schedulability analysis

– Applicability to high-reliability hard real-time systems is
still far away

• Timing analysis no longer independent of scheduling

• HW interference analysis is a major challenge

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 20

Real-time model

• Parallelism control

– In some situations (e.g. real-time) it may be necessary to
specify more structure and behavior of execution

– A set of mechanisms available to provide that control:
• Executors aspect of task/task type to size the pool

• Max_Executors parameter for dispatching domain Create
operation

• Tasklet_Count aspect of a discrete subtype, an array type, an
iterator type, or an iterable container type

• Potentially_Unbounded_Blocking aspect of subprogram

• No_Executor_Migration restriction

• No_Implicit_Parallelism restriction

• No_Nested_Parallelism restriction

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 21

Real-time model

• Open issues

– Many issues have been thoroughly discussed at the last
Real-Time Ada Workshop

– Some have been closed

– Some are still open
• Multiple parallel updates to task attributes

• Arbitrary selection for transfer of control needs to be further
analyzed

• How to efficiently determine if code is executing in parallel

• Methods to efficiently track and implement execution timers

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 22

Summary

• There is a need to support parallel programming

– Effort being done in all languages, new and existing

• Ada needs to be augmented with parallel
programming facilities

– With a strong semantic model

– Reducing the burden from the programmer

– And syntactic sugar to reduce re-writes

• There is an ongoing effort to produce a proposal

– Still issues to be addressed

• No full implementation

– But partial examples from other domains or models

23June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015

Thank you!

• Questions?

• Do you want to help?

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 24

