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Review of the model

• Based on the notion of a logical unit of potential 
parallelism

– A lightweight task, denoted Tasklet
• When there is no parallelism, there is an implicit tasklet for the 

Ada Task

– Tasklet creation is either explicit
• The programmer specifies algorithms with explicit parallel 

constructs

– Or implicit
• The compiler itself generates the tasklets (e.g. parallelizing 

subprogram calls)

June 2015An Execution Model for Fine-Grained Parallelism in Ada, Ada-Europe 2015 3



Review of the model

• Separate the design of parallelism from the 
implementation of parallel execution

– Allow parallelism design during the development process 
without the need for profiling

– Compiler and runtime (with assisted profiling) knows best 
how to map to the underlying HW

• Implicit parallelism

• More complex algorithms may require re-write

– Programmer writes code under a potentially parallel 
assumption

» Actual execution can be sequential 

• However, also consider the need of a model, where the 
programmer specifies the details of the mapping, for analyzability
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Review of the model

• Restrictions on what the logical unit can be

– Several parallel frameworks use similar concepts
• Some provide a complete asynchronous approach 

• Others are loosely defined, with a weak semantic or execution 
model

– Ada must clearly have a well-defined model
• Tasklets are within Tasks 

• With a strict fork-join model 

• Tasklets inherit task attributes

– Priority, deadline 

• Execution needs also to have a model
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Review of the model
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task body My_Task is
begin
-- tasklet A, parent of B, C, F and G, 

ancestor of D and E

parallel 
-- tasklet B, child of A, 

parent of D and E
parallel
-- D, child of B, descendent of A, 

sibling of E

and
-- E, child of B, descendent of A, 

sibling of D
end parallel;

and
-- tasklet C, child of A, sibling of B, 

no relation to D and E
end parallel;

-- tasklet A again

for I in parallel 1..2 loop
-- compiler creates tasklets F and G, 

child of A, no relation to B,C,D and E
end loop;

-- tasklet A again
end My_Task;

A

B C

F G

D E
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Review of the model

• Transfer of control out of one parallel sequence (eg. 
return, exit, goto, raise)

– initiates the aborting of the parallel sequences not yet 
completed  

• Once all other parallel sequences complete normally or abort, the 
transfer of control takes place

– If multiple parallel sequences attempt a transfer of control 
before completing

• one is chosen arbitrarily and the others are aborted

• Exceptions follow the same model

– Aborting a tasklet need not be preemptive, but
• Prevents initiation of tasklets which have not started and of 

further nested parallel blocks/loops
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Review of the model

• Shared variables

– Two actions occurring within two different parallel 
sequences of the same parallel block/loop are not
automatically sequential

• Execution can be erroneous if these actions access the same 
object (or a neighboring object that is not independently 
addressable from the first object)  

– New aspects may be specified to enable the static 
detection of such problems at compile time

• (proposed) Global aspect to identify usage of global variables and 
(proposed) Potentially_Blocking aspect to identify subprograms that use 
constructs that are potentially blocking

• Compiler has information to determine whether two constructs 
can be safely executed in parallel
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Execution model

• Tasklets compete for the (finite) execution resources

– Necessary to provide the semantics of the execution 
model

– Particularly important if blocking is to be allowed

• Implementations and HW differ significantly

– Goal is to provide a model which is independent of a 
particular implementation

– The focus is then in specifying the perceived behavior that 
an implementation (compiler and runtime) needs to 
provide so that Task progress is guaranteed

• Without constraining how such implementation should be done 
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Execution model

• An executor is an entity which is able to carry the 
execution of tasklets

– Most likely executors would be operating system threads, 
but other approaches may be used

• Freedom to the implementers, allowing minimum functionality, without 
full overhead associated with thread management
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Execution model

• Tasklet execution is a limited form of 
run-to-completion
– When a tasklet starts to be executed by one executor, it is 

executed by this same executor until the tasklet finishes 

• Simplicity, data locality

• Exception is only when tasklets block (more later)

– Run-to-completion does not mean that the tasklet will execute 
uninterruptedly or that it will not dynamically change core 

• The executor itself might be scheduled in a preemptive global 
approach
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Execution model

• The progress of a Task is defined based on the 
execution of the tasklets
– A Task is progressing if at least one of its tasklet is being executed, or 

ready to be executed

• Tasklets are considered to be blocked when they are waiting for a 
resource, which is not an executor nor a core (e.g. waiting in an entry call)

• Higher priority / earlier deadline tasklets being executed do not impact 
the model 

• Important to understand the conditions which may lead 
to a otherwise “correct” program to behave in a wrong 
way
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Execution model

• Potentially blocking operations

– Some parallel algorithms require co-ordination between 
the potentially parallel tasklets

• Wavefront, pipelining, etc.

• Tasklets down the chain require data output by upstream tasklets

– Allowing tasklets to block may lead to wrong behavior
• Programmers write the parallel algorithms assuming infinite 

parallelism

• Compiler may aggregate parallel computations in “chunks”

• Runtime may map tasklets to the same or different executors

– Risks of deadlock, depending on the tasklet allocation to the 
underlying executor
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Execution model

• Potentially blocking operations
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parallel

-- some operations

barrier.wait(3);

-- some operations

and

-- some operations

barrier.wait(3);

-- some operations

and

-- some operations

barrier.wait(3);

-- some operations

end parallel;

for I in parallel Range loop

if … then

obj.wait_for_my_data;

end if;

-- work on my data

end loop ;

If the tasklets are mapped to the same 
executor, then it deadlocks

If the compiler “chunks” 
in X tasklets < Range 
then it deadlocks
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Execution model

• Implementations must provide one class of behavior

– Immediate – immediate availability of an executor: if a 
tasklet is ready and a core is available to execute it (either 
idle or executing lower priority tasklets) then an executor 
is immediately provided

– Eventual – availability of an executor: if a tasklet is ready 
and a core is available to execute it (either idle or 
executing lower priority tasklets) it is guaranteed that an 
executor will eventually be provided

– Limited – even if cores are available, ready tasklets might 
need to wait for an executor, and the runtime does not 
guarantee that one will be eventually available 
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Execution model

• Blocking operations may be allowed if:

– Implementation guarantees that all tasklets will be 
allowed to execute

• Immediate and eventual behaviors fulfil the requirement

• Limited model requires offline analysis to guarantee that the 
number of available executors is always sufficient for the 
maximum simultaneous demand

– Implementation ensures that the behavior is as if each call 
to a potentially blocking operation was allocated to a 
single tasklet

• The compiler generates individual tasklets when potentially 
blocking operations are used
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Execution model

• The model does not stipulate how an 
implementation provides these guarantees

– Immediately providing an executor may requiring create 
new executors unboundedly

– Blocked tasklets may require blocking the executor, or 
saving and restoring tasklet state

– Implementations may use bounded or unbounded 
executor pools

– Parent waiting for children executing may suspend or spin
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Real-time

• As usual, real-time tasks map one-to-one with Ada 
tasks

– The execution of the Ada task generates a recurrent graph 
of tasklets
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Real-time model

• Each Ada task has its specific executor pool

– Executors carry the same priority/deadline of the task and 
(potentially) share budget quantum

• Offline analysis is used to determine the size of the executor pool

– Each task (and its DAG of tasklets) execute within the 
same dispatching domain 

– If priority/deadline boosting is required, e.g. within a 
protected action, affects only the executor that is actually 
executing in the action

• All other executors of the same task will continue at its base 
priority/deadline 
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Real-time model

• The use of this model allows the application of state-
of-the-art schedulability analysis

– Applicability to high-reliability hard real-time systems is 
still far away

• Timing analysis no longer independent of scheduling

• HW interference analysis is a major challenge
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Real-time model

• Parallelism control

– In some situations (e.g. real-time) it may be necessary to 
specify more structure and behavior of execution

– A set of mechanisms available to provide that control:
• Executors aspect of task/task type to size the pool

• Max_Executors parameter for dispatching domain Create 
operation

• Tasklet_Count aspect of a discrete subtype, an array type, an 
iterator type,  or an iterable container type

• Potentially_Unbounded_Blocking aspect of subprogram

• No_Executor_Migration restriction

• No_Implicit_Parallelism restriction

• No_Nested_Parallelism restriction
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Real-time model

• Open issues

– Many issues have been thoroughly discussed at the last 
Real-Time Ada Workshop

– Some have been closed

– Some are still open
• Multiple parallel updates to task attributes 

• Arbitrary selection for transfer of control needs to be further 
analyzed

• How to efficiently determine if code is executing in parallel

• Methods to efficiently track and implement execution timers
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Summary

• There is a need to support parallel programming

– Effort being done in all languages, new and existing

• Ada needs to be augmented with parallel 
programming facilities

– With a strong semantic model

– Reducing the burden from the programmer

– And syntactic sugar to reduce re-writes

• There is an ongoing effort to produce a proposal

– Still issues to be addressed

• No full implementation

– But partial examples from other domains or models
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Thank you!

• Questions?

• Do you want to help?
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