IPTV SYSTEMS, STANDARDS, AND ARCHITECTURES

IPTV over P2P Streaming Networks:

The Mesh-Pull Approach

Xiaojun Hei, Yong Liu, and Keith W. Ross, Polytechnic University

ABSTRACT

IPTV, an emerging Internet application,
would revolutionize the entertainment and media
industries; however, IPTV also has the potential
to overwhelm the Internet backbone and access
networks with traffic. To date, IPTV over P2P
streaming networks has advanced significantly
using two different approaches: tree-push versus
mesh-pull. In particular, the mesh-pull streaming
approach has achieved a number of successful
commercial deployments. In this article, we
examine the current progress in the research and
development of mesh-pull P2P streaming sys-
tems. We provide an overview of the general
mesh-pull streaming architecture and review vari-
ous challenges, design issues, and interesting
research problems in this approach. We discuss
the construction costs for providing an IPTV ser-
vice with service guarantees. We outline a mea-
surement technique for monitoring the video
playback quality of mesh-pull streaming systems.
We emphasize that the future P2P IPTV systems
should be designed to meet the expectations of
users for quality-of-experience. We also identify a
few other important issues for IPTV over P2P
streaming networks, including the traffic pressure
on ISPs, various security concerns, and the neces-
sity to re-examine the most appropriate P2P
architecture. Insights obtained in this study will
be valuable for the development and deployment
of future P2P IPTV systems.

INTRODUCTION

With the widespread adoption of broadband resi-
dential access and the advances in video com-
pression technologies, IPTV may be the next
disruptive Internet application. Considering a
scenario where hundreds of millions of users
watch video programs online at a bit rate of 500
kb/s or more, IPTV would revolutionize the
entertainment and media industries; however,
IPTYV also has the potential to overwhelm the
Internet backbone and access networks with traf-
fic. Given this possible tidal wave of new Internet
traffic, an in-depth understanding of the IPTV
delivery mechanisms is essential, particularly for
the delivery architectures that hold the greatest
promise for broad deployment in the near future.

Peer-to-peer (P2P) streaming networks do
not rely on a dedicated delivery infrastructure
and hence offer the possibility of rapid deploy-
ment at low cost. The upload capacity of peers
can be utilized for video transmission so as to
reduce the server load dramatically. Therefore,
P2P streaming appears to be the most promising
mechanism for the IPTV deployment. Content
owners often are not equipped with a strong
content delivery infrastructure; the low cost
incurred in the P2P streaming paradigm is par-
ticularly appealing to these content owners. Nev-
ertheless, the large volume of video traffic
generated by P2P applications has been raising
the traffic load on the network infrastructures of
telecommunication operators.

There exist two major design issues for con-
structing a P2P streaming network:

* How to form an overlay topology between
peers

* How to deliver video content efficiently

The current approaches can be classified into

two categories:

e Peers form a tree-shaped overlay, and video
content is pushed from the origin server to
peers, namely the tree-push approach

¢ Peers form a mesh-shaped overlay, and they
pull video from each other for content
delivery, namely the mesh-pull approach.

Over the years, many tree-push systems have

been proposed and were evaluated in academia,

and they achieved some success. However, they
never took off commercially. Nevertheless,
mesh-pull IPTV systems have enjoyed a number
of successful deployments to date, such as Cool-
Streaming [1], PPLive (www.pplive.com), and
others [2-4]. The major advantages of mesh-pull
systems are the simple design principle and
inherent robustness, particularly desirable for
the highly dynamic, high-churn P2P environ-
ment. A well-written tutorial on P2P video

streaming over the Internet can be found in [5].

Our study in this article dissects the general

architecture of the current, most popular mesh-

pull P2P streaming systems.

The aim of this article is to explore the gen-
eral design space and challenges of mesh-pull
systems. First, we provide an overview of the
general mesh-pull streaming architecture. The
operations of the mesh-pull system rely on the
bandwidth contribution from each peer. Peers

86

0163-6804/08/$25.00 © 2008 IEEE

IEEE Communications Magazine * February 2008

may have different upload capacity due to differ-
ent types of access links. Next, we discuss the
implication of the heterogeneity in peer upload-
ing capacities on system scalability. User experi-
ences play an important role in a successful
IPTV application. We then review the service
quality issues and introduce a quality monitor-
ing methodology for the mesh-pull system.
Mesh-pull streaming systems employ both TCP
and UDP as the underlying transport control
protocol. The congestion control problem is
revisited. Security is another vulnerable aspect
of most current mesh-pull systems. Also, we
outline the potential peer poison and video pol-
lution attacks in these systems. Different P2P
streaming architectures have different advan-
tages and drawbacks in video playback quality
perceived by end users. Pure mesh-pull archi-
tectures may find it difficult to meet the strin-
gent delay requirement of future IPTV services.
Next, we briefly discuss a hybrid tree-mesh
architecture for the next generation P2P IPTV
systems. Finally, we conclude the article by
highlighting the design challenges for future
mesh-pull streaming systems.

MESH-PuLL P2P
STREAMING ARCHITECTURE

A number of mesh-pull streaming systems have
been deployed to date. However, most mesh-
pull streaming systems provide little informa-
tion about their proprietary technologies.
Through our measurement studies and protocol
analysis on a few mesh-pull streaming systems
[2, 6], we gained significant insights into the
protocols and streaming mechanisms of mesh-
pull streaming systems. In spite of different fea-
tures and implementation details, they share a
common generic architecture that we describe
in this section.

SYSTEM OVERVIEW

As shown in Fig. 1, mesh-pull P2P architectures
have the following characteristics. A video is
divided into media chunks and is made available
from an origin server for broadcast. All the video
information is accessible for users at the channel
server. A host, interested in viewing the video,
requests the available video streams from the
channel server (Step 1 in Fig. 1). The tracker
server maintains a list of hosts who are interested
in watching the same video. After a host selects
the video in which it is interested, it retrieves a
list of hosts currently watching the same video
(Step 2 in Fig. 1). The host then establishes part-
ner relationships (TCP/UDP connections) with a
subset of hosts on the list (Step 3 in Fig. 1).
These peers help each other and deliver video
traffic cooperatively. The host also may establish
a partner relationship with the origin server.
Each host viewing the video caches and shares
chunks with other hosts viewing the same video.
In particular, each host receives buffer maps
from its current partners. A buffer map from a
remote partner indicates the chunks that are
available on that partner. Using a chunk schedul-
ing algorithm, each host requests the chunks that
it will require in the near future from its part-

Tracker
server

Origin
video
server

Chunk
Chunk
Chunk
Chunk

Peer

M Figure 1. Mesh-pull P2P live streaming architecture.

L Rendering

Buffer | Chunk Chunk
map |request | reply Download
Media
e player
streaming
engine Cache
>
Buffer | Chunk Chunk
map |request reply Upload

M Figure 2. A peer includes a P2P streaming engine and a media player. The

streaming engine trades chunks with partner peers.

ners. Each host continually seeks new partners
from which it can download chunks.

SOFTWARE COMPONENTS

Figure 2 shows the software components of a

peer in a mesh-pull system. The peer software

includes a P2P streaming engine and a media

player. The streaming engine has the job of:

* Retrieving chunks from partner peers and
(possibly) from the origin server.

e Storing the retrieved chunks in a cache.

e Sharing media chunks stored in its cache
with its partners.

* Sending a copy (of the data) of each chunk
that it receives to the media player.

As shown at the bottom of Fig. 2, the local peer

sends a buffer map to each of its partner peers.

A partner peer, having learned which chunks

that the local peer has from the buffer map,

IEEE Communications Magazine ¢ February 2008

87

Offset

P BM width _
BM playable
video

» > 4

1111111000101 100

Playback point

Time

M Figure 3. A peer's buffer map, which indicates the chunks it currently has

cached.

issues requests for specific chunks. The local
peer then sends the requested chunks to that
partner peer.

P2P Streaming Engine — At any given instant,
the P2P streaming engine caches up to a few
minutes worth of chunks within a sliding win-
dow. Some of these chunks may be chunks that
recently were played; the remaining chunks are
chunks scheduled to be played in the next few
minutes. Peers download chunks from each
other. To this end, peers send to each other
buffer map messages; a buffer map message
indicates the chunks that a peer currently has
buffered and can share. A buffer map message
includes the offset (the ID of the first chunk),
the width of the buffer map, and a string of
zeroes and ones indicating which chunks are
available (starting with the chunk designated by
the offset). A unique channel ID also is carried
in each buffer map message. Figure 3 illustrates
the structure of a buffer map.

A peer can request a buffer map from any of
its current partner peers. After peer A receives a
buffer map from peer B, peer A can request one
or more chunks that peer B has advertised in its
buffer maps. A peer may download chunks from
tens of other peers simultaneously. The stream-
ing engine continually searches for new partners
from which it can download chunks. Different
mesh-pull systems may differ significantly with
their peer selection and chunk scheduling algo-
rithms. The selection and scheduling algorithms
used by CoolStreaming are documented in [1].
Peers also can download chunks from the origin
server. The chunks typically are sent over TCP
connections; however, recently, video chunks
also are transferred using UDP in more mesh-
pull systems.

Media Player — When the client application is
started, the media player is launched, and the
URL of the video stream is provided to the
media player. From the client’s perspective, the
server of the media content is the P2P streaming
engine (which is in the same host as the media
player). After the media player is initialized, it

(typically) sends an HTTP request to the P2P
streaming engine. After receiving the request,
the P2P streaming engine assembles its chunks
and header information into a media file and
delivers the file to the media player. Because
new chunks continually arrive to the streaming
engine, the streaming engine continually adds
data to the file. Because some chunks may not
arrive before the playback deadline, there can be
“gaps” in the received media file. When the
media player begins to receive the video from
the streaming engine, it buffers the video before
playback. When it has buffered a sufficient
amount of continuous video content, it begins to
render the video.

MESH-PULL STREAMING:
BITTORRENT REVISITED?

Bearing strong similarities to BitTorrent, mesh-
pull streaming deviates significantly from BitTor-
rent in various aspects. BitTorrent by itself is not
a feasible video streaming architecture, because
it does not account for the real-time require-
ments of IPTV. In mesh-pull streaming, each
video chunk has a corresponding playback dead-
line. Hence, video chunk scheduling is an indis-
pensable component for assisting a timely video
delivery.

Due to the stringent playback deadline of
video chunks, fair resource sharing has not been
addressed carefully in the current mesh-pull sys-
tems, in that there are no reciprocity mecha-
nisms deployed in the current mesh-pull systems
to encourage sharing between peers, such as Tit-
for-Tat equipped in BitTorrent.

BitTorrent is targeted at a group communi-
cation of medium size (<1000); hence, peers
retrieve peer neighbor information directly
from the tracker server. However, a large-scale
live streaming broadcast can easily attract tens
of thousands of users. Hence, gossip-like peer
search algorithms have been implemented in
various mesh-pull systems to support large-scale
group communication. However, the deploy-
ment of gossip algorithms produces various
results, that is, delay may occur in searching
peers; tracker servers may handle only part of
the peers in the system and hence, lose the
global view and control of the network; and so
on.

SYSTEM SCALABILITY:
CONSTRUCTION COSTS

In mesh-pull streaming systems, participating
peers are very heterogeneous, particularly in
terms of the amount of upload bandwidth they
contribute [2]. In addition, peers may randomly
join the system, watch the video for a random
period of time, and then leave the system. These
two factors, peer heterogeneity and churn, gen-
erate the major challenges in provisioning the
P2P IPTV services to ensure that all participat-
ing peers can continuously playback the video
(without freezing or skipping) with a small play-
back delay.

The current peers participating in mesh-pull
streaming systems are usually broadband resi-

88

IEEE Communications Magazine * February 2008

dential peers, with DSL and cable access, and
institutional peers, with high-bandwidth Ether-
net access. The residential peers, or ordinary
peers, typically have upload capacity of 500 kb/s
or less; the institutional peers, or super peers,
often have upload capacity in excess of a few
Mb/s. The service level of P2P streaming sys-
tems is largely determined by the resources
contributed by all the peers in the system, that
is, upload bandwidth. These two types of peers,
ordinary and super peers, have different upload
capacities. If the upload capacity of ordinary
peers cannot sustain the video playback rate,
super peers must contribute additional upload
capacity to help the ordinary peers. As demon-
strated in [7], there exists a critical value of the
ratio between ordinary peers and super peers
for sustaining a satisfied service level of P2P
streaming systems. Roughly speaking, when this
ratio exceeds this critical value, the system per-
forms well; otherwise, the system performs
poorly.

Most mesh-pull streaming systems to date
deploy only limited delivery infrastructure, that
is, channel list servers, tracker servers, and so
on. The service quality of peers varies signifi-
cantly at different time and locations. IPTV ser-
vice providers may invest in additional streaming
infrastructure, either using servers that they
operate or that are provided by content distribu-
tion networks (CDN). To be cost-effective, it is
crucial that service providers quickly detect when
service quality degrades, so that they can add,
retroactively and dynamically, additional upload-
ing capacity. When service quality is satisfactory,
the infrastructure capacity can be released for
other purposes.

VIDEO PLAYBACK:
QoS TowARD QOE

The IPTV viewing experience of users is crucial
for a successful service deployment. If users
experience frequent freezes in the video play-
back, large delays for start up after switching
channels, or significant time lags among users
for the same video frame, then they may aban-
don the service. Important IPTV quality metrics
include initial start-up delay, video switching
delay, playback time among users, video play-
back continuity, and so on.

QuALITY METRICS

As theoretically demonstrated in [7], appropri-
ate buffering can significantly improve video
streaming quality. However, too much buffering
in mesh-pull systems can lead to an unaccept-
able delay performance for an IPTV service.
Start-up delay is the time interval from when
one video is selected by a user until actual play-
back starts on his/her screen. For IPTV applica-
tions on the best effort Internet, startup
buffering always has been a useful mechanism
to deal with the rate variations of IPTV ses-
sions. IPTV applications additionally must deal
with peer churn, increasing the requirement for
start-up buffering and delay. Although short
start-up delay is desirable, a certain amount of
start-up delay is required for continuous play-

back. End users also may switch to watch anoth-
er video from the current one. Before users can
watch the new video, the buffering in mesh-pull
systems often incurs video switching delay. These
delays are, of course, significantly longer than
those experienced in traditional television.
Hence, the state-of-the-art mesh-pull P2P
streaming technology does not provide users
with the same channel-surfing experience as
traditional television.

Another unfortunate characteristic of a mesh-
pull P2P streaming system is the possibility of
playback time lags among peers due to the
deployment of the buffering mechanisms. Specif-
ically, some peers watch frames in a video min-
utes behind other peers. Thus, for the example
of a live broadcast of a soccer game, some peers
might see a goal a few minutes after other peers.
Additionally, peers with large playback lags will
not upload useful chunks to peers with smaller
lags, decreasing the aggregate uploading capacity
of the system.

In addition, because of the real-time nature
of IPTV, each media chunk has a playback dead-
line (which can be different from one peer to
another by a few minutes). When a chunk does
not arrive before its playback deadline, the peer
has two options: it can freeze the playback with
the most recently displayed video frame and wait
for the missing chunk to arrive; or it can skip the
playback of the frames in the chunk and advance
the deadlines for the subsequent chunks accord-
ingly. The freeze is a natural consequence of the
media playback when there are no video chunks
in the buffer of the player. If there are still
chunks available in the buffer of the player, the
player continues playback although those chunks
might not be continuous; in this case, video play-
back skipping occurs. In many P2P live stream-
ing systems, when the playback freezes for an
extended period of time, the engine terminates
the connection with the player and restarts the
entire streaming process; we refer to this impair-
ment as rebooting.

QUALITY INFERENCE USING BUFFER MAPS

Various parties are interested in monitoring the
service quality of IPTV applications. Service pro-
viders would like to detect when service quality
degrades, so that they can add additional upload-
ing capacity for maintaining a satisfied service
level. This information could be provided to
users as an aid in selecting P2P video providers.
It also could be provided to advertisers who wish
to advertise in IPTV systems.

Video quality is conventionally characterized
by video distortion; the quality measurement
normally involves the video rate measurement
from which video distortion is estimated, utiliz-
ing empirical rate-distortion curves or various
proposed rate-distortion models. However, this
approach usually varies among the video
sequences and is not suitable for video quality
measurement over the Internet, because this
approach typically requires extensive direct traf-
fic measurements and hence, incurs high over-
head and cost.

As we described earlier, peers in P2P mesh-
pull streaming systems advertise buffer maps to
each other for exchanging the availability of the

In many P2P live
Streaming systems,

when the playback

freezes for an

extended period of

time, the engine
terminates the

connection with the

player and
restarts the entire
Streaming process;
we refer to this
impairment as
rebooting.

IEEE Communications Magazine ¢ February 2008

89

|
In @ measurement
study, the number of
simultaneous users
watching a live
broadcast of the
annual Spring
Festival Gala for the
Chinese New Year
on January 28, 2006
reached over
200,000 users at a
bit rate in the
400-800 kb/s range,
corresponding to an
aggregate bit rate
in the vicinity of
100 Gb/s!

video chunks that they have cached. The infor-
mation provided in these buffer maps correlates
with the playback quality and start-up latency of
that peer. Given this correlation, buffer maps
can be exploited to measure network-wide quali-
ty [6]. In this approach, instead of monitoring
video traffic between peers, we capture the
exchange of peer buffer maps that summarize
the availability of video data at the various peers.
These buffer maps are of very small sizes. There-
fore, this approach generates significantly less
measurement traffic in the network.

As shown in Fig. 3, the offset value in a buffer
map indicates the playback position of a peer. The
string of zeroes and ones embedded in buffer
maps shows the chunks that a peer currently has
buffered and can share. When a peer joins the
network and has no chunks in its engine cache, it
sends buffer maps with a particular playback off-
set, that is, equal to zero. After a peer obtains
chunks from other peers, the offset is set to a
value of the playback starting position. The
streaming engine will start the player when the
size of the cached playable video size exceeds a
specified pre-buffering video threshold. The con-
secutive buffer maps provide snapshots of the
video chunks in the cache. Therefore, we can infer
the start-up delay of the playback of a peer given
the sequence of the buffer maps of this peer. In
addition, by tracing the switching of the channel
IDs carried in buffer maps, we are able to infer
the channel switching delay of one peer. In track-
ing user playback continuity, the playback freezing
events are inferred when the buffer map playable
video, determined from the buffer maps, remains
at a low level of size over a period of time. Under
normal circumstances, the buffer map offset
should increase at the video playback rate; hence,
by tracking the variability of the offset increasing
rate, playback reboot events can be inferred.

The playback quality on a peer is largely
determined by whether the peer can retrieve
video chunks before their play-back deadlines.
Using buffer maps, for a specific chunk, we can
calculate the fraction of peers that have retrieved
the chunk at any time instant. The chunk
retrieval ratio among peers should grow over
time until it approaches one. The speed of the
growth is a good measure of the P2P video dis-
tribution efficiency. The chunk retrieval ratio is
a good metric for service providers for making
capacity offload decisions. When this ratio is
high, service providers may remove their capaci-
ty for other purposes; otherwise, service pro-
viders should add additional server capacity to
sustain a high-level chunk retrieval ratio.

OPTIMIZATION FOR QUALITY-OF-EXPERIENCE

The conventional quality of service (QoS) met-
rics, such as delay, loss, and so on that are com-
monly used in network-layer service provisioning
are important but not sufficient in evaluating a
successful IPTV application. We find that most
current mesh-pull IPTV systems incur start-up
delays ranging from a few seconds to a couple of
minutes, and the playback time lags up to sever-
al minutes among peers. Although research
efforts were conducted to minimize delays and
increase the video bit rate for high-quality video
services, IPTV service providers can optimize

the IPTV application to achieve satisfied user
experience, namely, quality of experience (QoE).
In addressing noticeable start-up delay, some
advertisement videos can be pre-cached on the
user side; when a user starts the IPTV applica-
tion, these advertisement videos immediately are
played back. During the playback of these com-
mercials, videos are downloaded in the back-
ground. Therefore, users experience zero
start-up delay, and the IPTV service provider
has an avenue to obtain revenues. Another pos-
sibility is to provide multiple videos with differ-
ent bit rates for the same channel. Dedicated
servers are deployed to provide the low-quality
video, and the P2P delivery architecture is uti-
lized to transfer the high-quality video. When a
user joins the service, the P2P engine downloads
the low-quality video from the server to achieve
a quick service initiation; then, the engine down-
loads the high-quality video from other peers.
Technology can provide the foundation of the
IPTV application; nevertheless, a deep psycho-
logical understanding of user behavior and
expectations is helpful in optimizing the applica-
tion to maximize the user viewing experience.

TRAFFIC PRESSURE:

TCP versus UDP

The possible tidal wave of IPTV traffic will cre-
ate a great deal of pressure on the Internet. In a
measurement study [2], the number of simultane-
ous users watching a live broadcast of the annual
Spring Festival Gala for the Chinese New Year
on January 28, 2006 reached over 200,000 users
at a bit rate in the 400-800 kb/s range, corre-
sponding to an aggregate bit rate in the vicinity
of 100 Gb/s! In the future, we envision increasing
IPTV traffic volume with thousands of streaming
channels available on the Internet, each with a
bit rate of 500 kb/s or more and each supporting
tens to hundreds to thousands of users.

The huge traffic volume generated by IPTV
applications is a growing concern among Inter-
net service providers (ISPs) that must support
the distribution cost without sufficient incentives.
Video chunks are the basic data units in mesh-
pull systems. ISPs might consider deploying
caching infrastructures to cache these video
chunks for assisting the peers within their
domains and reducing the inter-ISP IPTV traf-
fic. On the other hand, peers in mesh-pull
streaming systems also should turn to more
locality-aware [8] chunk delivery when selecting
peers and video chunks for download.

The transmission of video chunks in mesh-pull
streaming systems is carried using TCP or UDP.
TCP provides a reliable and congestion-aware
transport. However, the selection of the TCP
transport introduces various implications on end-
hosts, access links, and network cores. Operating
systems, in general, have constraints on the maxi-
mum rate to accept new TCP connections. When
a peer receives a large number of TCP connection
requests, there may not be a response for other
TCP requests. Other networking applications run-
ning on the same host, such as Web browsing, may
suffer significantly. Residential users may have
additional difficulties because access routers at

920

IEEE Communications Magazine * February 2008

home are often of limited capacity and not capa-
ble of handling a large number of TCP connec-
tions. When one user is watching IPTV, other
users using different computers within the same
LAN may have poor network connectivity. Recent-
ly, we found that mesh-pull streaming systems
tend to carry IPTV traffic using UDP instead of
TCP. UDP incurs much less connection overhead
than TCP; however, this increased usage of UDP
raises a concern that this UDP traffic should be
congestion-aware to avoid network collapse.
Because UDP datagrams may be dropped in the
networks, IPTV applications must address how to
react to packet loss. The simplest strategy is to
ignore the dropped UDP datagrams with the
expectation that the viewing quality does not suf-
fer too much in spite of a small amount of packet
dropping; however, too much UDP segment loss
will severely degrade the video playback perfor-
mance. It may be beneficial to retransmit some of
the lost UDP datagrams with the additional com-
plexity in P2P applications. As a more promising
alternative, this streaming traffic can be delivered
over the Datagram Congestion Control Protocol
(DCCP) [9] to achieve a good trade-off between
timeliness and reliability.

SECURITY CONCERNS:
ATTACKS AND DEFENSES

The distributed P2P architecture of mesh-pull
streaming systems makes them prone to various
security threats. A malicious peer in the system
may mix video stream with bogus chunks that
can significantly degrade the quality of the ren-
dered media at the receivers. This peer can also
advertise a large number of non-existing peers
who are interested in the same channel; there-
fore, a legitimate peer may find it difficult to
identify other legitimate peers to download
video chunks. Due to the low distribution cost of
P2P streaming, we expect user-generated live
video content (emanating from Web cams and
wireless devices) to be distributed using P2P
mesh-pull architectures. The origin video server
from a user is usually a computer with limited
CPU power and network capacity. If malicious
peers connect to this server and occupy its band-
width, without sharing the video chunks with
other peers, other peers are not able to enjoy
the video at all. A mesh-pull streaming system
potentially consists of hundreds of thousands of
peers. If malicious peers advertise that one vic-
tim host has abundant video chunks, other peers
may send chunk requests to this victim host, con-
suming the CPU power and network bandwidth
of this host. As a result, this victim host may
undergo denial-of-service (DoS) attacks.

Similar attacks have been studied heavily in
P2P file-sharing applications; nevertheless, few
attacks have been reported for mesh-pull IPTV
systems. Due to the real-time communication in
IPTV, the potential attacks on mesh-pull systems
can be devastating. In [10], a chunk pollution
attack is demonstrated to severely degrade the
performance of an IPTV application. In the exper-
iment, before launching the attack, a particular
channel had about 3300-plus viewers before the
attack; during the attack the number of viewers

dropped to about 500 within 30 minutes. The
video quality became unacceptable for a large
majority of peers, and they eventually left the sys-
tem. In defending this attack, chunk signing is an
effective mechanism. In chunk signing techniques,
the so-called authentication information, or signa-
ture, must be transmitted to the receivers along
with the chunks. This authentication information
can either be provided by the source (in which
case, the load on the source might be high) or
could be distributed through the P2P system itself,
in the form of a separate stream, or be piggy-
backed with video chunks. A peer receives each
chunk and its corresponding signature one by one,
verifies its integrity, and plays back (and forward)
only if the chunk is valid; otherwise it rejects the
chunk as being polluted. In facing the security
challenges in mesh-pull streaming systems,
researchers and developers should meet the real-
time requirements for defense. They may benefit
from the lessons in combating the pollution, poi-
soning, and DoS attacks in P2P file sharing.

ARCHITECTURE RETHINK: TREE-
PusH, MESH-PuLL, OR PusH-PULL?

Mesh-pull systems have enjoyed a number of suc-
cessful commercial deployments; however, tree-
push systems largely have been running at the
research stage. Nevertheless, those mesh-pull sys-
tems often suffer from long start-up delays, signif-
icant video switching delays, and large peer
playback time lags. Unlike mesh-pull systems,
tree-push systems have smaller delay performance
when the tree structure does not break down due
to peer churn, and peers at the higher level of the
tree have sufficient upload capacity to support the
streaming of their children peers. The debate on
whether mesh-pull or tree-push is more suitable
for IPTV is on-going [11, 12]. The architecture
design trade-offs will affect various system charac-
teristics significantly [13], that is, system resilience
and signaling overhead, and so on.

In mesh-pull systems, the fundamental task of a
peer is to download video chunks quickly. To this
end, a peer should first locate its peer neighbors as
potential chunk providers; then, identify the chunks
to download. Either its neighbors notify this peer
of their buffer maps, or this peer inquires about
the buffer maps of its neighbors, so that the chunk-
availability information propagates among peers
quickly. Finally, this peer pulls chunks from its
neighbors according to the buffer map informa-
tion. The amount of the time used in this process
often contributes a large portion of the long ser-
vice delay suffered in mesh-pull systems. Video
also can be divided into chunks and be delivered
via tree-push systems. Before the chunk delivery
starts, the single/multiple tree structure is estab-
lished, and the chunks are just forwarded from the
root of the tree at the video source to the different
levels of the tree hierarchy. There is no further
communication overhead for the subsequent chunk
delivery unless the trees must be repaired due to
the departure of intermediate peers. Therefore,
the delay performance in tree-push systems is in
general good when the trees are stable.

Recently, a new type of push-pull architec-
ture appears to promise to offer a good trade-off

|
The distributed P2P
architecture of
mesh-pull streaming
systems makes them
prone to various
security threats.

A malicious peer in
the system may mix
video stream with
bogus chunks that
can significantly
degrade the quality
of the rendered
media at the
receivers.

IEEE Communications Magazine ¢ February 2008

91

The increasing user
base of P2P IPTV
systems will surely
attract more
malicious attacks.
It is urgent to
address various
vulnerabilities in
current designs to

improve the security

of future P2P IPTV
systems.

between the peer/chunk selection and scheduling
overhead and the delay performance [12, 14].
The basic idea is to construct the chunk distribu-
tion trees between those peers that are stable
and of high upload capacity — or super peers —
so that video chunks can be pushed from the
video source to these super peers quickly. Those
ordinary peers, however, pull chunks from the
super peers and other ordinary peers.

In this push-pull scenario, super peers con-
tribute more upload capacity than ordinary
peers; however, all the peers enjoy the same
video playback quality. It is questionable what
the incentives are for one peer to become a
super peer. One way to encourage the contribu-
tion of peers is to provide differentiated service
in IPTV applications. In [15], layered video can
be used to provide such incentives among
streaming peers. Ordinary peers download only
a basic-layer video to receive the basic video
playback quality; however, super peers download
multiple-layer video to enjoy an enhanced video
quality.

CONCLUSION

The current practice of mesh-pull P2P streaming
systems demonstrates the feasibility of large-
scale application layer multicast on top of the
best-effort Internet. In this article, we provided
an overview of existing mesh-pull systems. We
briefly discussed several important design issues
regarding performance, reliability, and security
of mesh-pull systems. Despite its early successes,
P2P IPTV is still at an early stage. Many open
and interesting research problems remain to be
addressed to design and deploy the next genera-
tion P2P IPTV services with superior user QoE.
P2P IPTV systems should be enhanced with
appropriate server infrastructure support to
achieve a high level of QoS. On the other hand,
the popularity of P2P IPTV applications on the
Internet has posed a great challenge for network
infrastructures to support tremendous P2P IPTV
traffic. Therefore, it is critical to design new P2P
IPTV systems in an [SP-friendly fashion to mini-
mize the traffic stress that they impose on ISP
networks. In addition, the increasing user base
of P2P IPTV systems will surely attract more
malicious attacks. It is urgent to address various
vulnerabilities in current designs to improve the
security of future P2P IPTV systems.

ACKNOWLEDGMENT

This work was supported by the National Sci-
ence Council under Grant ITR-0325726 and
Grant CNS-0519998.

REFERENCES

[1] X. Zhang et al., “DONet/CoolStreaming: A Data-Driven
Overlay Network for Peer-to-Peer Live Media Stream-
ing,” IEEE INFOCOM, vol. 3, Mar. 2005, pp. 2102-11.

[2] X. Hei et al., "A Measurement Study of a Large-Scale
P2P IPTV System,” IEEE Trans. Multimedia, vol. 9, no. 8,
Dec. 2007.

[3] Y. Tang et al., “Deploying P2P Networks for Large-Scale
Live Video-Streaming Service,” IEEE Commun. Mag.,
June 2007.

[4] A. Sentinelli et al., “Will IPTV Ride the Peer-to-Peer
Stream?” |[EEE Commun. Mag., June 2007.

[5] J. Liu et al., "Opportunities and Challenges of Peer-to-
Peer Internet Video Broadcast,” Proc. IEEE, 2007.

[6] X. Hei, Y. Liu, and K. W. Ross, “Inferring Network-Wide
Quality in P2P Live Streaming Systems,” IEEE JSAC, vol.
25, no. 10, Dec. 2007.

[7] R. Kumar, Y.Liu, and K. W. Ross, “Stochastic Fluid Theo-
ry for P2P Streaming Systems,” IEEE INFOCOM, 2007.

[8] T. Karagiannis, P. Rodriguez, and K. Papagiannaki,
“Should Internet Service Providers Fear Peer-Assisted
Content Distribution?” ACM IMC, 2005.

[9] E. Kohler, M. Handley, and S. Floyd, “Datagram Conges-
tion Control Protocol (DCCP),” RFC 4340, Mar. 2006.
[10] P. Dhungel et al., “The Pollution Attack in P2P Live
Video Streaming Systems: Measurement Results and

Defenses,” Sigcomm P2P-TV Wksp., 2007.

[11] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-
Tree: A Comparative Study of Live P2P Streaming
Approaches,” IEEE INFOCOM, 2007.

[12] M. Zhang et al., “Understanding the Power of Pull-
Based Streaming Protocol: Can We Do Better?” |EEE
JSAC, 2007.

[13] V. Fodor and G. Dan, “Resilience in Live Peer-to-Peer
Streaming,” IEEE Commun. Mag., June 2007.

[14] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid
Tree/Mesh Overlay for Application-Layer Live Video Mul-
ticast,” IEEE ICDCS, 2007.

[15] Z. Liu et al., "Using Layered Video to Provide Incen-
tives in P2P Streaming,” Sigcomm P2P-TV Wksp., 2007.

BIOGRAPHIES

XIA0JUN HEI [S'02] (heixj@poly.edu) received his B.Eng.
degree in information engineering from Huazhong Univer-
sity of Science and Technology, China, in 1998. He obtained
his M.Phil. degree in electrical and electronic engineering
from Hong Kong University of Science and Technology in
2000. He is currently working toward his Ph.D. degree in
the Department of Electronic and Computer Engineering at
Hong Kong University of Science and Technology. From
September 2005 to September 2007 he conducted a
research visit on P2P networking at the Department of
Computer and Information Science, Polytechnic University.
His research interests include P2P networking, network
modeling, and measurement.

YONG Liu [M'02] (yongliu@poly.edu) received his Ph.D.
degree from the Electrical and Computer Engineering
Department at the University of Massachusetts, Amherst, in
May 2002. He received his Master and Bachelor degrees in
the field of automatic control from the University of Science
and Technology of China in July 1997 and 1994, respective-
ly. He has been an assistant professor in the Electrical and
Computer Engineering Department of Polytechnic University
since March 2005. His general research interests are in
modeling, design, and analysis of communication networks.
His current research directions include robust network rout-
ing, peer-to-peer IPTV systems, overlay networks, and net-
work measurement. He is a member of ACM.

KEITH W. Ross [S'82, M’86, SM'90, F'06] (ross@poly.edu)
received a B.S.E.E from Tufts University, an M.S.E.E. from
Columbia University, and a Ph.D. in computer and control
engineering from the University of Michigan. He joined
Polytechnic University as the Leonard J. Shustek Chair Pro-
fessor in Computer Science in January 2003. Before joining
Polytechnic University, he was a professor for five years in
the Multimedia Communications Department at Eurecom
Institute, Sophia Antipolis, France. From 1985 through 1997
he was a professor in the Department of Systems Engineer-
ing at the University of Pennsylvania. He has worked in
peer-to-peer networking, Internet measurement, video
streaming, Web caching, multiservice loss networks, content
distribution networks, network security, voice over IP, opti-
mization, queuing theory, and Markov decision processes.
He is currently an Associate Editor of IEEE/ACM Transactions
on Networking. He has served as an advisor to the Federal
Trade Commission on P2P file sharing. He is coauthor (with
James F. Kurose) of the popular textbook, Computer Net-
working: A Top-Down Approach Featuring the Internet
(Addison-Wesley, 4th ed. 2007). The text is used by over
200 U.S. universities each academic year, is widely used
internationally, and has been translated into 12 languages.
He is also the author of the research monograph Multiser-
vice Loss Models for Broadband Communication Networks
(Springer, 1995). From 1999 to 2001 he took a leave of
absence to found and lead Wimba, an Internet technology
startup. Wimba develops and markets Java-based asyn-
chronous and synchronous VolP technologies, primarily for
the online education and language learning markets.

92

IEEE Communications Magazine * February 2008

