
A Performance Comparison of Dynamic Web Technologies 1

L a n c e T i t c h k o s k y 2, M a r t i n Ar l i t t z and C a r e y W i l l i a m s o n

Abstract

Today, many Web sites dynamically generate responses "on
the fly" when user requests are received. In this paper, we
experimentally evaluate the impact of three different dynamic
content technologies (Perl, PHP, and Java) on Web server per-
formance. We quantify achievable performance first for static
content serving, and then for dynamic content generation,
considering cases both with and without database access. The
results show that the overheads of dynamic content generation
reduce the peak request rate supported by a Web server up to
a factor of 8, depending on the workload characteristics and
the technologies used. In general, our results show that Java
server technologies typically outperform both Perl and PHP
for dynamic content generation, though performance under
overload conditions can be erratic for some implementations.

Keywords: Web Performance, Web Server Benchmarking,
Dynamic Content Generation, Performance Evaluation

1 Introduction

On the World-Wide Web today, many sites dynamically cre-
ate responses to user requests. Dynamic "on-the-fly" content
creation provides Web site operators with several advantages:
access to information stored in databases; the ability to per-
sonalize Web pages according to individual user preferences;
and the opportunity to deliver a much more interactive user
experience than possible with static Web pages alone.

Along with the advantages of dynamic content come several
disadvantages. Dynamically generating Web content can sig-
nificantly impact Web server performance, reducing the scal-
ability of the Web site. Other disadvantages include security
and availability concerns. Dynamically generated content can
create security vulnerabilities or Denial-of-Service (DOS) op-
portunities, beyond those of static content Web sites.

In this paper, we examine the impacts on Web server per-
formance from three different popular dynamic Web content
technologies: Perl, PHP, and Java. The security and availabil-
ity issues are beyond the scope of this paper.

Our experimental measurement results quantify the impacts
of dynamic content generation on Web server performance.
In particular, the overheads of database access and the pro-

1A 4 page version of this paper appears in [14].
2The authors are with the University of Calgary, Calgary, AB.
3Contact Author: arlitt@cpsc .ucalgary. ca

cessing required for dynamic content generation each take
their toll. Combined, these effects reduce the peak request
rate supported by a server up to a factor of 8, depending on
the workload characteristics and the technologies used. In
general, our results indicate that Java server technologies out-
perform both H I P and Perl, but there are many performance
tradeoffs among these technologies. In particular, we find that
Web server performance under overload can be quite erratic.

The remainder of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the test environ-
ment used in this study. Section 4 presents our methodology
and experimental design, while Section 5 presents the results
of our study. Section 6 concludes the paper with a summary
of our work and a discussion of future directions.

2 Related Work

There have been numerous studies evaluating Web server per-
formance. Many of these studies focus on Web server perfor-
mance in LAN environments [5, 6, 9]. Several more recent
studies consider Web server performance in WAN environ-
ments [2, 10, 18]. To the best of our knowledge, all of these
studies only consider static Web content.

In 1995, Yeager and McGrath [19] studied the effects of dy-
namic content workloads on Web server performance. These
results indicated that the Common Gateway Interface (CGI),
which enables the dynamic generation of Web content, is
much slower than directly retrieving a static file of the same
size. Since this study, Web server architectures have improved
significantly, and new technologies are now widely used for
dynamic Web content generation. Thus our work can be com-
pared to Yeager and McGrath's to determine how the perfor-
mance of dynamic Web page generation has changed relative
to static content serving in the past decade.

Cecchet et al. examine more recent dynamic Web content
generation technologies, using two distinct benchmarks [3].
Our work is complementary to theirs. Based on the bench-
marks they used, their results are of particular interest to on-
line bookstore and auction sites. Our work, with simpler
workloads, identifies more general performance tradeoffs rel-
evant to any site using dynamic Web content generation.

There have also been many commercial Web server bench-
marking studies. For example, many server companies use
standard benchmarks such as SPECWeb to measure the per-
formance of their products relative to those of their com-

petitors. The current version of the SPECWeb benchmark,
SPECWeb991, measures the performance of a Web server us-
ing requests for both static and dynamic content.

A second commercial benchmark of interest is TPC-W 2.
TPC-W is a transactional Web benchmark developed by the
Transaction Processing Performance Council. The workload
generated by TPC-W is intended to represent the activities of
a business oriented transactional Web server. A detailed eval-
uation of TPC-W is provided in [4].

Developing realistic benchmarks requires detailed knowledge
of the system workloads. One challenge for benchmark de-
signers has been the scarcity of characterization studies for
dynamic Web workloads. Studies to date include [1], [13],
and [17]. As the understanding of dynamic Web workloads
improves, so too will the realism of the benchmarks.

3 Experimental Environment

Our testbed consists of four IBM x335 servers: two for the
clients, one for the Web server, and one for the database
server. These machines are interconnected via a 1 Gbps full-
duplex switched Ethernet LAN. The remainder of this section
provides a detailed description of this test environment.

3.1 Hardware Configuration
3.1.1 Client Configuration: The two client machines

in our testbed are rack-mounted IBM x335 servers running
RedHat Linux 8.0. Each machine has a single Intel 2.4 GHz
Intel Xeon processor, 1 GB of RAM, and a 36 GB 15K
U320 SCSI disk. Each client used 124 MB of RAM as a
"RAMdisk" (a virtual disk in memory [11]) for collecting
statistics on the client's behaviour during testing. Each client
machine has two 1 Gbps Ethernet NICs, although only one
NIC on each machine is used in the experiments.

Several changes were made to the Linux kernel configura-
tion on the clients. First, the number of available file de-
scriptors was increased from 1,024 to 32,768. Second, we
enabled TCP TIME_WAIT recycling. Both of these changes
were necessary to allow the client to generate and sustain high
request rates. Finally, all non-essential processes on the client
machines were disabled, to minimize the consumption of re-
sources by processes unrelated to workload generation.

3.1.2 Server Configuration: The server machines in
our test environment are rack-mounted IBM x335 servers run-
ning RedHat Linux 7.3. The server hardware configuration is
identical to that of the clients. The Web server also uses 124
MB of memory as a RAMdisk for storing statistics collected
during tests. As with the client machines, all non-essential
processes on the servers were disabled prior to conducting any
tests, and available file descriptors were increased to 32,768.

l http : //www. spec. org/web9 9/
2http : //www. tpc. org/tpcw/

3.1.3 Network Configuration: The client and server
machines are connected to an HP Procurve 5300XL switch.
This switch is configured with 20 full-duplex 1 Gbps ports.

3.2 Software Configuration
3.2.1 Client Workload Generation: For all of the

tests in this study we use h t t p e r f , a tool for measuring
HTTP performance [8]. We chose to use this tool for sev-
eral reasons. First, we have used this tool in the past, so
we are familiar with its interface and its capabilities. Sec-
ond, l a t t p e r f supports a wide range of features (e.g., per-
sistent connections, pipelining, SSL) that are useful for test-
ing Web server functionality. Although we only use a subset
of h t t p e r f ' s features in this work, we intend to use more of
these capabilities in future work. Third, h t t p e r f supports
open-loop workload generation, allowing the exploration of
server performance under overload. Finally, h t t p e r f is
available 3 in source code form, so that we can add additional
functionality if desired.

3.2.2 Server Software: We use several different Web
servers, modules, and servlet containers in our work:

• Tux

Tux 4 is a kernel-based, multi-threaded, high-
performance Web server available for Linux sys-
tems [15]. We use Tux version 2.1 to demonstrate that
our client workload generators are not the bottleneck
in any of our tests.

• Apache

Many of our experiments involve the Apache 5 Web
server. We use Apache server versions 1.3.27 and
2.0.45 in our work. Apache 1.3.27 is a process-based
server that uses a separate process to handle each out-
standing request. Apache 2.0.45 uses a hybrid thread
and process model in an attempt to improve the server's
performance. We include Apache in our tests because
it is the most popular Web server on the Internet, used
by more than 60% of all Web sites 6.

• PHP

PHP (Hypertext Preprocessor) 7 is a scripting language
specifically designed for use on the Web. It is the most
popular dynamic Web content technology for use with
Apache servers. According to an ongoing, automated
survey, HIP is used by half of all Web sites running
Apache [12]. PHP's popularity is due to its low cost
(free) and its ease of use. Our tests use PHP version
4.3.1 compiled as a module for both Apache 1.3.27 and
Apache 2.0.45.

3ftp://ftp.hpl .hp.com/pub/httperf

4http : //people. redhat, com/mingo/TUX-patches /
5http : //httpd. apache, org/
6http : //news. netcraft, com/
7http : //www. php. net /

• Perl

Perl s is a popular general purpose scripting language
developed by Larry Wall in 1987. Perl was not de-
signed to be a Web scripting language, but has been
extended to include functionality useful for Web de-
velopment. Perl is available under the GNU General
Public License and an Artistic License, and thus is free
to use. In early usage, the performance of Perl for
dynamic content creation was quite slow, since a new
Perl interpreter was spawned for each incoming Web
request. To avoid this process creation overhead, an
Apache module (mod_per l 9) was created. This mod-
ule embeds a persistent Perl interpreter into Apache it-
self. Approximately 20% of all Apache Web sites use
mod_perl [12].

Our Perl tests use Perl version 5.6.1 on Apache 1.3.27
with m o d _ p e r l version 1.27. We could not test Perl
with Apache 2.0.45, since we were unable to install
m o d _ p e r l 2.0 successfully on our server.

• Server-Side Java

Server-side Java is a relatively new technology that uses
a pool of Java virtual machines to respond to Web re-
quests. It is a subset of Sun's Java 2 Enterprise Edition
(J2EE) 1° technology. The servers, which run Java, are
known as servlet containers or Java servers. We ex-
amine three servlet containers in this paper: Tomcat,
Jetty, and Resin. Sun's Java Development Kit version
1.41.1_02 was used for all three of the tested servlet
containers. We run the servlet containers in stand-alone
mode, rather than integrating them into Apache.

- Tomcat

Tomcat n is a servlet container that provides the
official reference implementation for both Java
Servlets and Java Server Pages. For our work, we
use Tomcat version 4.1.24.

- Jetty

Jetty 12 is a Web server and Java servlet container
written entirely in Java. It is an open source
project, but the majority of the development is
done by Mort Bay Consulting. Jetty is advertised
as one of the fastest servlet servers, which moti-
vated us to include it in our testing. For our work,
we use Jetty version 4.2.9.

- Res in

Resin 13 is a commercial Web server and Java
servlet container that is freely available to indi-
viduals for non-commercial use. The Resin Web
site claims that Resin's performance matches or

8http : //www. perl. com/
9http : //perl. apache, org/
10ht tp : / / java. sun. com/j 2ee/
llht tp : / / j akar ta. apache, org/tomcat /
12http://jetty.mortbay.org/jetty/
13http : //www. caucho, com/resin/

exceeds that of Apache for static files. After eval-
uating several versions of the Resin server, we de-
cided to use version 2.1.9 in our tests.

• MySQL

MySQL is open source 14 database software, known for
its high performance and reliability. We use MySQL
version 4.0.12 in the experiments with database access.

We tuned each of the servers to provide as fair a comparison
as possible. On all of the servers, the default per-request ac-
cess log was disabled, though error logs were still used. In
addition, the following changes were made, after evaluating
the effects of different configuration parameters on the perfor-
mance of each server. On Apache 1.3.27, the M a x C l i e n t s
parameter was set to 256 and the MaxRequest sPerChi ld
was set to 0. On Apache 2.0.45, MaxCl i e n t s was set to 250
(a multiple of the T h r e a d s P e r C h i l d parameter). With
Tomcat, e n a b l e L o o k u p s (DNS) was disabled, and m a x -
P r o c e s s o r s was set to 100. No additional changes were
made to the configurations of the Tux, Jetty and Resin servers.

3.2.3 Moni tor ing Software: We use several sources
of performance data to quantify the results of our experi-
ments and to help identify bottlenecks. We use the s a r (sys-
tem activity report) utility 15 to monitor system resource uti-
lization (e.g., CPU usage, I/O transactions, network utiliza-
tion), n e g s t a t provides information on network-related er-
rors such as the number of dropped TCP connections. The
output of h t g p e r f includes numerous statistics on TCP and
HTTP-level behaviour, including the average TCP connection
rate, the HTTP request rate, and the HTTP reply rate. The
Web server error logs indicate when problems occur with the
server application (e.g., too many concurrent connections).

3.3 Contro l l ing the Test E n v i r o n m e n t
We define an experiment as a number of tests, each of which
examines a different level of a particular factor. All other
factors are fixed throughout the experiment, although they can
vary between experiments.

Each experiment is controlled from one of the client ma-
chines. Each experiment is specified as a shell script that is
executed on the control machine. Controlling the experiments
in this way ensures that the tests are conducted consistently.
Archiving the scripts aids in repeating the results as well.

Prior to the start of each experiment, the control mechanism
communicates (via s s h) with each machine involved in the
experiment, and collects information on the current state of
each machine. The control machine then starts the monitoring
software on all systems. The control machine is also used
to start each test, and to collect data after each of the tests
completes. At the completion of each experiment, all of the
collected data is archived to disk for off-line analysis.

14http : //www .mysql. com/
15http : //perso. wanadoo, fr/sebastien, godard/

Table 1: Experimental Factors and Levels
Type I Factor

Response Size Client
Workload
Parameters

Levels

2 KB, 64 KB
Request Rate 200-6,000/second (2 KB); 200-2,000/second (64 KB)
Response Type static, dynamic, dynamic/database

Server I Software [Apache, Perl, PHP, Tomcat, Jetty, Resin

4 Performance Evaluation Methodology

We examine four factors in our experiments, using a one-
factor-at-a-time experimental design [7]. Table 1 summarizes
the factors and levels used in our experiments.

The first three factors listed in Table 1 describe the client
workload. Since few characterization studies of dynamic Web
workloads exist, we use a simple workload for our experi-
ments. First, we issue requests for either a small file (2 KB)
or a large file (64 KB). Second, we vary the request rate so that
we can saturate the system and identify the bottleneck. The
third factor is the response type, for which we examine three
cases. Initially, we test the system using requests for static
files. This "traditional" Web workload indicates the expected
"best case" performance of the system. For the second level,
the Web server dynamically generates a response of the re-
quested size, using CPU resources but no I/O to the database.
In the third case, the dynamic request results in a database ac-
cess. Each HTTP request causes an SQL INSERT command
that writes a small amount of data to the database. Then, 2
KB or 64 KB of text is generated, containing some data from
an SQL SELECT command.

The final factor listed in Table 1 is the server software. These
servers and modules were described in Section 3.2.2.

In this study we focus on evaluating server performance for
several generic situations: requests for small or large static
files, and requests requiring small or large dynamic responses,
both with and without database access. We do not model indi-
vidual user behaviour. Each client simply generates requests
at the specified rate. Each TCP connection transfers at most
one HTTP request and one HTTP response. A timeout value
of 4 seconds is used to terminate TCP connections when the
server is slow to respond. This enables us to generate and
sustain overload conditions. Although the workload is sim-
ple, it still provides valuable insights into the performance of
dynamic content generation. Using more realistic workloads
to evaluate each of the servers remains as future work.

The run length for experiments was chosen subject to two
constraints. First, the test duration must be long enough to
assess accurately the server's ability to support the target re-
quest rate. Second, the duration of each test should be as short
as possible, in order to test many request rates, and accurately
identify the peak performance of each server.

We used a duration of 120 seconds for each test. As illustrated
in Figure 1, this duration is sufficient for determining the

4500

~ 4000

~ 31500

c

'at 4,500 responses/second, ~'hieved rate Is below ~rget rate'

3000

2500

2000 .

1500 ..

1000 ..

500 ~ ...
at 500 responses/second, adnieved rate matches target rate

0 i i i = i i J
0 15 30 45 60 75 90 105 120

T i m e (seconds)

Figure 1: Apache 2.0.45 Response Rate Over Time (2 KB Static)

server performance when the target response rate is below the
server's peak rate. For example, the horizontal lines show that
the tested server (Apache 2.0.45) exactly matches the target
rates from 500 to 4,000 responses per second. Since the work-
load has only one unique file per test, the server's caching
mechanism warms almost immediately, and performance is
stable throughout the test. When more realistic workloads are
used, such as in [3], longer durations are needed warm the
server's caching mechanism and reach steady state.

When the targeted response rate puts the server in an over-
load condition, it takes the server longer to reach "steady
state". For example, Figure 1 shows that the server was not
able to achieve the target rate of 4,500 responses per second.
For the first few seconds of this test, the server comes close
to achieving the target rate. However, shortly afterward the
server performance degrades. After approximately 15 sec-
onds, the server's performance fluctuates between 2,300 and
3,900 responses per second. While 120 seconds may not be
long enough to determine the server's exact behaviour under
overload, it is sufficient to know that the server is overloaded.

4.1 Validation of the Test Environment
In this section, we provide a basic "sanity check" of our ex-
perimental environment, in order to demonstrate its capacity.
We conducted two experiments, one with a workload of 2 KB
static files, the other with a workload of 64 KB static files.
Both validation experiments use the Tux Web server.

Figure 2(a) shows the results for the experiment with 2 KB
static files. This figure shows three sets of data. First, the
points (black squares) represent the average number of TCP
connections initiated by the clients during each 2-minute test.

50130

0000

|

c~nnec~h rate ' " I
request rata - - I reply rata

J
1000 2000 3000 4000 5000 6000 500 1000 1500 2000 2500 3000 3500 4000

Talget Rate (number per second) Taeoet Rate (number per second)

(a) (b)

10(30

900

800

700

100

100

0
400 800 1200 1600 2000 2400 2800 3200 3600 4000

Reques~second

(c)

Figure 2: Validation Tests Illustrating System Capacity: (a) 2 KB Static Files; (b) 64 KB Static Files; (c) Server Network Utilization

Second, the solid line (overlapping the points in this graph)
shows the average rate at which HTTP requests were issued to
the server. Third, the dashed line (also overlaid on the points
in this graph) shows the average number of HTTP responses
per second sent by the server in each test. The results provided
in Section 5 focus on the average number of responses per
second achieved by each tested server configuration.

The results in Figure 2(a) show that the two clients can gen-
erate and sustain a combined workload of 6,000 requests per
second for a static 2 KB file. This figure also shows that with
Tux, the server platform and the network are capable of sup-
porting 6,000 responses per second for a static 2 KB file.

Figure 2(b) shows the results with 64 KB static responses for
the Tux server. In this case, the system is limited to about
1,700 responses per second. While TCP connections are still
established beyond that point, the server is unable to accept
requests at a higher rate. The bottleneck in this case is the
network between the server and the switch: on average, the
server is transmitting approximately 900 Mbps of data, with
peaks near 1 Gbps (1,000 Mbps), as shown in Figure 2(c).
While we could have alleviated this bottleneck by using both
network interfaces on the server, we decided not to do this
since the achieved response rate already exceeds the expected
range for any of the dynamic content servers. The results in
Section 5 confirm this observation.

To summarize, our experimental infrastructure is capable of
generating and sustaining request and response rates of (at
least) 6,000 per second for 2 KB static files, and 1,700 per
second for 64 KB static files. Achieved response rates lower
than these in the main experiments indicate a bottleneck re-
lated to the particular server software being tested.

5 Experimental Results

5.1 Static Workloads
In this section, we examine the performance of the different
Web servers for static Web content.

5.1.1 2 KB Static Workload: First, we examine the
results for the 2 KB static files. Figure 3(a) shows the

achieved response rates for the different Web servers in our
experiments. The solid diagonal line represents the perfor-
mance of the Tux server. As we discussed in Section 4.1,
we use Tux to demonstrate the capacity of our testbed. Since
the achieved response rate (y-axis) for Tux matches the target
response rate (x-axis) for all tested rates, we know that our
experimental infrastructure is capable of generating and sus-
taining (at least) 6,000 responses per second for 2 KB static
files. Results lower than this indicate a bottleneck related to
the particular server software being tested.

After Tux, Apache is the server with the best performance.
Figure 3(a) shows that both Apache servers attain similar
peak performance, supporting approximately 4,000 responses
per second. Surprisingly, the Apache 2.0.45 server exhibits
poorer performance than Apache 1.3.27 under overload (i.e.,
when the achieved rate is less than the target rate). That is,
the performance drops off more sharply for Apache 2.0.45
than for Apache 1.3.27. Figure 3(b) shows the CPU utiliza-
tion of each server by target response rate. Prior to over-
load, Apache 2.0.45 has a slightly higher CPU utilization than
Apache 1.3.27 for equivalent response rates. Once the servers
become overloaded, the CPU utilization of Apache 2.0.45 is
lower than that of Apache 1.3.27. Under overload, Apache
2.0.45 is unable to accept TCP connections (and hence re-
quests) as quickly as Apache 1.3.27. Figure 3(c) shows the
number of failed TCP connection establishment attempts 16, a
side effect from queues filling up when requests are not ac-
cepted quickly enough. Apache 2.0.45 has more failed TCP
connections than Apache 1.3.27. Since Apache 2.0.45 ac-
cepts fewer connections when overloaded, it processes fewer
requests than Apache 1.3.27, and has lower CPU utilization.

Figure 3(a) also shows the achieved response rates for the
three Java-based Web servers, which all achieve significantly
lower peak response rates than the Apache servers. Among
the Java-based servers tested, Resin had the highest perfor-
mance, peaking at 2,200 responses per second, followed by
Tomcat (1,550 responses per second) and Jetty (1,150 re-
sponses per second). Since the Java-based servers are opti-
mized for handling dynamic responses, they do not perform
as well as the Apache servers for this static content workload.

16Attempts can exceed the target rate because of TCP retransmissions.

6

Figure 3(b) shows that the Jetty and Tomcat servers both reach
100% CPU utilization. The Resin server, however, reaches a
peak CPU utilization of only 75%. The bottleneck in this case
is the Java platform (version 1.4.1). In preliminary experi-
ments with the next version (1.4.2), the Resin server achieves
higher response rates, at a peak CPU utilization of 100%.

A final observation regarding the Java-based Web servers is
that Tomcat and Jetty have much more predictable perfor-
mance under overload than Resin. Figure 3(d) explains why.
Figure 3(d) shows that as Jetty nears overload, it gradually
increases the number of threads available for processing re-
quests, until the maximum number of threads is reached. Jetty
retains these threads for the rest of the experiment, provid-
ing relatively predictable performance under overload. Resin,
on the other hand, behaves quite differently. It also spawns
additional threads until the maximum number of threads is
reached. However, unlike Jetty, Resin periodically terminates
old threads and creates new ones. This overhead affects the
performance of the Resin server under overload, making it
less predictable than Jetty. Tomcat (not shown) behaves sim-
ilarly to Jetty under overload, though Tomcat spawns new
threads occasionally, which impacts performance somewhat.

5.1.2 64 KB Static Workload: Figure 4(a) shows the
achieved response rates for the 64 KB static workload. As
was discussed in Section 4.1, Tux achieves a maximum re-
sponse rate near 1,700 responses per second. Beyond this
rate, the network is the bottleneck. Apache 1.3.27 achieves
a peak rate of 1,400 responses per second; the achieved rate
then decreases slowly under overload. Apache 2.0.45 peaks
near 1,300 responses per second. With this workload, Apache
2.0.45 behaves better under overload than it did for smaller
files. The three Java-based servers again have much lower
peak performance than the Apache servers. Jetty peaks near
700 responses per second, and degrades gracefully under
overload. Resin supports a similar response rate, but per-
forms more erratically under overload. For this workload,
Tomcat has the poorest performance of all the servers eval-
uated, supporting only 450 responses per second. Tomcat's
performance under overload is also somewhat erratic.

Figure 4(b) shows the CPU utilization of each server for the
64 KB static workload. All servers have a peak CPU utiliza-
tion of 100%. The CPU utilizations during overload vary, for
the same reasons that were discussed in Section 5.1.1.

5.2 Dynamic Workloads (without database access)
In this section, we analyze the performance of different dy-
namic content generation technologies, for small and large
dynamic pages. In both cases, the content generation process
does n o t involve database access.

5.2.1 2 KB Dynamic Workload (without database ac-
cess): Figure 5(a) shows the achieved response rates for six
different methods of dynamic content generation, for 2 KB re-
sponses. First, we examine the results that involve the Apache

Web servers. The results in Figure 5(a) show that the peak
performance of PHP on Apache 1.3.27 is 1,400 responses
per second. This rate is about 35% of the performance of
the Apache server for static content of the same size. PHP
on Apache 2.0.45 has even poorer performance, peaking at
1,000 responses per second, or 25% of its peak performance
for static 2 KB workloads. In other words, dynamic page gen-
eration alone can reduce the server's peak response rate by a
factor of 3 to 4. Both PHP server configurations are stable
under overload. The performance of Perl is similar to that of
PHP on Apache 2.0.45. Figure 5(b) reveals that the PHP and
Perl servers on Apache are all CPU-bound.

When generating content dynamically, the three Java-based
servers all perform reasonably well compared to the PHP and
Perl configured servers. Peak response rates of 1,300, 2,200
and 1,500 per second are achieved by Jetty, Resin, and Tom-
cat, respectively. These are comparable to H I P on Apache
1.3.27, and significantly better than PHP on Apache 2.0.45
or Perl on Apache 1.3.27. Surprisingly, the performance of
the Java-based servers when generating 2 KB dynamic re-
sponses is almost identical to their performance when serving
static files. This supports our observation that the Java-based
servers are optimized for handling dynamic Web workloads.
However, the Java-based servers behave more erratically un-
der overload conditions than the PHP and Perl server configu-
rations, for this particular workload. Figure 5(b) indicates that
Jetty and Tomcat are CPU-bound, while Resin is not. Resin's
performance is impeded by the poor scalability of the Java
1.4.1 platform [16], as indicated in Section 5.1.1.

Cecchet et al. observed that Java servlets were less efficient
than PHP, due to inter-process communication overheads [3].
In our experiments, the Java servers operate in standalone
mode, avoiding this overhead.

5.2.2 64 KB Dynamic Workload (without database
access): The results of the experiments with 64 KB dy-
namic responses (without database access) are shown in Fig-
ure 6(a). Once again, the PHP-enabled servers have the low-
est performance, supporting only 250 and 200 responses per
second, respectively. These rates are less than 20% of the
Apache server performance results for static files of the same
size. Perl does significantly better than PHP, achieving a peak
rate of 650 responses per second.

The Jetty and Tomcat servers achieve 450 and 400 responses
per second, respectively, which is significantly lower than
their performance when serving 64 KB static files. The Resin
server achieves slightly higher performance, reaching a peak
of 600 responses per second.

Figure 6(b) shows the CPU utilization results. The servers are
all CPU-bound, as was the case for 64 KB static responses.

5.3 Dynamic Workloads (with database access)
In this section, we analyze the performance of the different
dynamic content generation strategies for small and large dy-

~, 6000

8
5000

4000
c
o~

3000 ~c

2000

1000

~ o

7000

6000

5000

~- 4000

~ooo

2 0 0 0

~soo

0

' Apache 1.3

"""''£S,
A •

1000 2000 3000 4000 5000 6000
Target Response Rate (number per second)

(a) Response Rates

f /"
k~ ° /

o/
=,g

1000 2000 3000 4000 5000 6000
Target Response Rate (number per second)

(c) Failed TCP Connection Attempts

100

e~ 80

• ~ 60

P_
~ 4O

co

~ ~o

0
0

200

¢n .~ 16o

t -

o~ tOO

E
~o

' / ~ ' ' ..;"i~ v -v,..vk '
~,4 A F, ?,/',.,.A. , v

i / } A~cheZ0 - - r " : ~''~ ~ . .-.
/ ! ,[....... .,,.~.,~.~ s " ~'Y "\.g}..,: .

, ' / , ""~t~-. . . .~ ; : ,

i s ~ "\ ," i ' - x"Vb, ,, ' ' V'4!,.A ~'.,./~ , ~ ~..,4r'.)'~.... ' U " ,,v,;~ , . . , : ,.
! J Z''d,-~A , / ~', ~ -

i i ~, .- / y"." ..~K \ r--, ,,v, . k
i i / .//'I A v i, ~v / / ...'" ,

~; / . . - '5: / ' Jetty
; i / . . y T o m c a t
~ I R e s i n 2 . 1 9 - - - -
, ~ / Apache2.0
;" , , , I Apache1.3

1000 2000 3000 4000 5000 6000
Target Response Rate (number per second)

(b) C P U Ut i l i za t ion

1000 2000 3000 4000 5000
Target Response Rate (number per second)

(d) Active Server Threads

6O00

F i g u r e 3: Results for 2 KB Static Responses

2000

1750

1500

1250

1000

750

~" 500

250

"~ o

' Tux ' I
Apache1.3 I
Apache2.0 Tu~
Resin2.19 - - I

Jetty I
Tomcat --.---.__.._.:. J

~ 2 . o

250 500 750 1000 ,1250 1500 1750 2000
Target Response Rate (number per second)

(a) Response Rates

100

8O

8o

~ 40
o

2O

/ ' v YV 1 , , ,

250 500 750 1000 1250 1500 1750 2000
Target Response Rate (number per second)

(b) CPU Uti l izat ion

F igure 4: Results for 64 KB Static Responses

30O0

8
= 2500

2000

1500 OE

i 1000

~ o

' Resin2.19
Torrcat I

PHP(Apachel.3) J
Jetty I

PHP(Apeche2.0) I ~ 2.1a
Ped(Aoachel.3~ - - I / " ~

;: x~-L

PHP (ApacPa,~ 2.0) and Ped (AF~oh ! 3)

500 1000 1500 2000 2500 3000
Target Response Rate (number per second)

(a) Response Rates

\/",

8O

i " ' j ' . ' . " . . . , - . - : =.,\ " ~ i '

, , . / i

20 / f /

0
0 500 1000 1500 2000 2500 3000

Target Response Rate (number per second)

(b) CPU Utilization

Figure 5: Results for 2 KB Dynamic Responses (No DB Access)

1000

~. ~o
700

E g 600
~ ~o
a:

400
8

.~ 100

~ o

Iie,ln 2 .19

0 100 200 300 400 500 600 700 800 900 1000
Target Response Rate (number per second)

(a) Response Rates

100

8O

so

4o

2O

- / / ' /
/,×S"

//,.:."
/ / Z',.~/

0 100 200 300 400 500 600 700 800 900 1000
Target Response Rate (number per second)

(b) CPU Utilization

Figure 6: Results for 64 KB Dynamic Responses (No DB Access)

A 2000

1750

~- 1500

=E 1250
c

1000

750

250

o

' Resin2.19 '
Tomcat

PHP(Apachel.3)
Jetty

PHP(Apache2.0)
PedtADacbe1.3) RUle 2.10

i i i i i i =

250 500 750 1000 1250 1500 1750 2000
Target Response Rate (number per second)

(a) Response Rates

100 \

80 :::'!-.-""
g ,'/<

60
Rein

O

20 [/ ~ . ~ l N A p a e b e l . 3)
I / Y / / I Jetty
I ~ . ~ P H P (Apeche2.0)

0 :¢ Ped A ache1.3 - -

0 250 500 750 1000 1250 1500 1750 2000
Target Response Rate (number per second)

(b) CPU Utilization

Figure 7: Results for 2 KB Dynamic Responses (with DB Access)

namic pages. In these experiments, a single SQL INSERT and
a single SQL SELECT command are executed when generat-
ing the response. We utilize a single persistent connection for
all communication between the Web servers and the database
server. This reduces the overhead of communication with the
database, and avoids locking contention at the database.

5.3.1 2 KB Dynamic Workload (with database ac-
cess): Figure 7(a) shows the results for the 2 KB dynamic
responses requiring database access. Two observations are
evident from this graph. First, the three Java-based servers
outperform the servers that are using PHP or Perl. Second,
accessing the database significantly reduces the performance
of all servers. The peak performance of the servers in these
experiments is 50% to 64% of that when no database access
is required for dynamic content generation. In other words,
database access can reduce the server response rate by an-
other factor of 2.

Among the three Java-based servers, Resin has the highest
peak performance at 1,400 responses per second, followed
by Tomcat at 950 responses per second, and Jetty at 750 re-
sponses per second. All of these servers perform erratically
under overload.

For the Apache-based servers, PHP on Apache 1.3.27 outper-
forms the others, with a peak performance of 850 responses
per second. Next is PHP on Apache 2.0.45, which achieves
600 responses per second. Perl on Apache 1.3.27 has the low-
est peak performance for this workload, supporting only 500
responses per second. This is 8 times fewer responses per sec-
ond than is supported by Apache 1.3.27 for the 2 KB static
workload. All of the Apache-based servers have relatively
stable performance under overload.

Figure 7(b) suggests that the bottleneck in these experiments
is not the Web server CPU. The actual bottleneck is the Web
server threads/processes synchronizing over the single persis-
tent connection to the database. This bottleneck could be alle-
viated with multiple persistent connections. However, a trade-
off exists between synchronizing requests on one or more per-
sistent connections and lock contention at the database. Iden-
tifying the optimal number of persistent connections to use
with each Web server is beyond the scope of this paper.

5.3.2 64 KB Dynamic Workload (with database ac-
cess): The results of the experiments for 64 KB dynamic
responses requiring database access are shown in Figure 8. As
was the case with 2 KB responses, the Java-based servers per-
formed at least as well as, and usually better than, the servers
configured with PHP. Jetty and Tomcat peak around 350 re-
sponses per second, and behave well under overload. Resin
again achieves the highest peak performance (approximately
550 responses per second), but is slightly more erratic under
overload. Perl on Apache 1.3.27 achieves the second highest
response rate of all the tested server configurations, support-
ing 400 responses per second. The PHP servers on Apache
1.3.27 and 2.0.45 had the worst peak performance, at 250 and

150 responses per second, respectively. Figure 8(b) shows
that all of the Web servers are CPU-bound, as was the case
for the other 64 KB experiments.

6 Summary and Conclusions

This paper presents a benchmarking study of dynamic content
generation techniques. The experimental study is conducted
using clients and servers in a dedicated Gigabit Ethernet LAN
environment. To the best of our knowledge, this is the first
study to evaluate such a broad range of dynamic content tech-
nologies using a variety of Web server software. While our
study is far from comprehensive, we believe that it provides
a state-of-the-art look at the performance tradeoffs between
different technologies for dynamic Web content generation.

There are three main conclusions from this work. First, the
ongoing trend toward personalization of Web content comes
at a price. There is often a dual impact on Web server per-
formance, from the overhead for database access, and from
the processing required for dynamic content generation itself.
Our experiments have quantified each of these effects. Com-
bined, these effects reduce up to a factor of 8 the peak request
rate supported by a server. Second, today's technologies for
dynamic Web content generation exhibit distinct tradeoffs in
terms of Web server performance. PHP handles small dy-
namic content requests well, but struggles with large dynamic
content requests. Jetty, Resin, and Tomcat are ill-suited for
serving static content, but perform better for their intended
purpose of dynamic content generation. In general, our results
indicate that Java server technologies outperform both PHP
and Perl. Finally, Web server performance under overload
can be quite unpredictable. Some dynamic content genera-
tion technologies are quite robust under overload (PHP, Perl,
Jetty), while some are not (Resin). Consideration of over-
load behaviour may be just as important as the peak request
rate when Web site administrators are choosing dynamic Web
content generation technologies.

The results in this paper provide Internet practitioners and
Web content developers with an indication of the performance
tradeoffs associated with current technologies for dynamic
content generation. Our benchmarking methodology is also
useful for the evaluation of emerging Web technologies, and
the performance tuning of existing implementations.

Our future work is focusing on characterizing dynamic con-
tent usage in academic and commercial Web sites, and on
benchmarking Web server performance for more realistic dy-
namic content workloads. The performance impact of oper-
ating system and Java platform enhancements, as well as the
synchronization and lock contention issues, also require fur-
ther examination.

10

, 1000

900

8o0

700
E

8o0

5 0 0

400
o =
~- 300

2OO

.~ 100

o

PHP A ache2.0

elan z..i

. i.<..__t . ~v-~7~;,-i.~f

100 200 300 400 500 600 700 800 900 1000

Target Response Rate (number per second)

(a) Response Rates

100

8 0

8 so
.ra

O

2 0

~-/' ' ?

.....

~ ' ~ i I ,g" ,-<'," >

I,;.'

/~,~/ ~ Jetty

0 PHP A ache2.0

0 1C0 200 300 400 500 600 700 800 900 I000
Target Response Rate (number per second)

(b) CPU Utilization

Figure 8: Results for 64 KB Dynamic Responses (with DB Access)

Acknowledgements

Financial support for this research was provided by iCORE
(Informatics Circle of Research Excellence), NSERC (Nat-
ural Sciences and Engineering Research Council), and CFI
(Canada Foundation for Innovation). The authors are grateful
to the anonymous reviewers, and to Nayden Markatchev for
setting up the testbed in the ELISA lab.

References

[1] M. Arlitt, D. Krishnamurthy, and J. Rolia, "Character-
izing the Scalability of a Large Web-based Shopping Sys-
tem", ACM Transactions on lnternet Technology, Vol. 1,
No. 1, pp. 44-69, August 2001.
[2] P. Barford and M. Crovella, "Measuring Web Perfor-
mance in the Wide Area", ACM Performance Evaluation Re-
view, Vol. 27, No. 2, pp. 35-46, September 1999.
[3] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite,
and W. Zwaenepoel, "Performance Comparison of Middle-
ware Architectures for Generating Dynamic Web Content",
Proceedings of 4 th Middleware Conference, Rio de Janeiro,
Brazil, June 2003.
[4] D. Garcfa and J. Garcfa, "TPC-W E-Commerce Bench-
mark Evaluation", IEEE Computer, Vol. 36, No. 2, pp. 42-48,
February 2003.
[5] J. Hu, S. Mungee, and D. Schmidt, "Techniques for
Developing and Measuring High-Performance Web Servers
over ATM Networks", Proceedings oflEEE INFOCOM, San
Francisco, CA, March/April 1998.
[6] Y. Hu, A. Nanda, and Q. Yang, "Measurement, Anal-
ysis, and Performance Improvement of the Apache Web
Server", Technical Report No. 1097-0001, University of
Rhode Island, 1997.
[7] R. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measure-
ment, Simulation and Modeling, John Wiley & Sons, Inc.,
New York, NY, 1991.
[8] D. Mosberger and T. Jin, "httperf: A Tool for Measur-
ing Web Server Performance", ACM Performance Evaluation
Review, Vol. 26, No. 3, pp. 31-37, December 1998.

[9] E. Nahum, T. Barzilai, and D. Kandlur, "Performance
Issues in WWW Servers", IEEE/ACM Transactions on Net-
working, Vol. 10, No. 1, pp. 2-11, February 2002.

[10] E. Nahum, M. Rosu, S. Seshan, and J. Almeida, "The
Effects of Wide-Area Conditions on WWW Server Perfor-
mance", Proceedings of ACM SIGMETRICS, Cambridge,
MA, pp. 257-267, June 2001.

[11] M. Nielsen, "How to use a RAMdisk for Linux",
http : //www. linuxfocus, org/English/

Novemberl 999 / art iclel24 .html

[12] SecuritySpace, "Apache Module Report", April 2003,
http : //www. securityspace, com/ssurvey/
data/man. 200308 / apachemods, html.

[13] W. Shi, R. Wright, E. Collins, and V. Karamcheti,
"Workload Characterization of a Personalized Web Site - And
Its Implications for Dynamic Content Caching", Proceedings
of the 7 th International Workshop on Web Caching and Con-
tent Distribution (WCW '02), Boulder, CO, August 2002.

[14] L. Titchkosky, M. Arlitt, and C. Williamson, "Perfor-
mance Benchmarking of Dynamic Web Technologies", Pro-
ceedings of lEEE MASCOTS 2003, October, 2003.

[15] Red Hat, "Tux Web Server Manuals", h t t p : //www.
redhat, com/docs/manuals / tux

[16] Sun Microsystems, "Java 2 Platform, Standard Edi-
tion (J2SE), Version 1.4.2 Performance White Paper", j a v a .
sun.com/j2se/l.4.2/l.4.2 whitepaper.html

[17] U. Vallamsetty, K. Kant, and P. Mohapatra, "Charac-
terization of E-Commerce Traffic", Electronic Commerce Re-
search Journal, Vol. 3, No. 1-2, January/April 2003.

[18] C. Williamson, R. Simmonds, and M. Arlitt, "A Case
Study of Web Server Benchmarking Using Parallel WAN Em-
ulation", Performance Evaluation, Vol. 49, No. 1-4, pp. 111-
127, September 2002.

[19] N. Yeager and R. McGrath, Web Server Technol-
ogy: The Advanced Guide for World Wide Web Informa-
tion Providers, Morgan-Kaufmann Publishers, Inc., San Fran-
cisco, CA, 1996.

11

