
Universidad Politécnica de Madrid
Escuela Técnica Superior de Ingenieros de 

Telecomunicación

CATCHING THE MIDDLEBOX: A TECHNIQUE FOR THE 
DETECTION OF INTERMEDIATE NETWORK DEVICES. 

TRABAJO FIN DE MÁSTER

Luis Martín García

2011



Universidad Politécnica de Madrid 
Escuela Técnica Superior de Ingenieros de 

Telecomunicación 

Máster Universitario en 
Ingeniería de Redes y Servicios Telemáticos

TRABAJO FIN DE MÁSTER

CATCHING THE MIDDLEBOX: A TECHNIQUE FOR THE 
DETECTION OF INTERMEDIATE NETWORK DEVICES.

Autor
Luis Martín García

Director
David Fernández Cambronero

Departamento de Ingeniería de Sistemas Telemáticos

2011



Resumen

A pesar de ser una de las lineas maestras del diseño y la arquitectura de 

Internet, el principio “extremo a extremo” se ha ido debilitando a lo largo de los 

años, hasta el punto de que, a día de hoy, son raras las configuraciones de red 

que  no  involucran  algún  tipo  de  dispositivo  intermedio,  o  middlebox, que 

controla o altera el tráfico intercambiado entre los extremos. Ejemplos de estos 

dispositivos intermedios son sistemas cortafuegos, NATs, pasarelas de nivel de 

aplicación,  balanceadores  de  carga,  etc.  Dichos  dispositivos  proporcionan 

funcionalidad  adicional  a  la  red,  convirtiéndose  a  menudo  en  elementos 

fundamentales  a  la  hora  de  garantizar  la  seguridad,  la  escalabilidad  o  la 

eficiencia de esa red. No obstante, su presencia y modo de operación viola de 

forma tajante el principio extremo a extremo que ha acompañado a la Internet 

desde  sus  inicios,  creando  en  algunos  casos  graves  problemas  en  las 

aplicaciones y servicios de red, que no contemplaron en su diseño que el tráfico 

desde  un  extremo  a  otro  de  una  comunicación  pudiera  verse  alterado  en 

tránsito. 

La  correcta  operación  de  aplicaciones  diseñadas  bajo  el  paradigma 

cliente/servidor,  o  las  relativamente  recientes  aplicaciones  que  siguen  el 

modelo entre pares (P2P), requiere con frecuencia que el nivel de aplicación 

posea cierto conocimiento del estado de las comunicaciones en los niveles de 

red y transporte, violando de esta forma el principio de independencia de las 

capas de la torre de protocolos. Sin embargo, la presencia de estos dispositivos 

es  difícil  de  detectar,  debido  principalmente  a  su  modo  transparente  de 

operación,  que  dificulta  la  detección,  tanto  cuando  las  comunicaciones  se 

establecen de forma correcta, como cuando no es posible hacerlo, haciéndose 

necesario incluso que los propios usuarios tengan conocimiento de la existencia 

de  los  dispositivos  y  realicen  los  cambios  de  configuración  pertinentes  que 

hagan viables las comunicaciones.

Probablemente debido a esa dificultad de detección, existe una significativa 

escasez de estudios sobre este campo, y técnicas que permitan conseguir ese 

objetivo. No obstante, el problema de la detección de dispositivos intermedios 

no es, en absoluto, inabordable. En este artículo se presenta una técnica novel 

para  la  detección  de  sistemas  intermedios,  a  través  del  análisis  de  las 

diferencias entre los paquetes generados en un extremo y los recibidos en el 

otro.





Abstract

In  spite  of  being  one  of  the  master  guidelines  in  the  design  and  the 

architecture of  the Internet,  the importance of  the end-to-end argument has 

diminished  over  the  years.  Nowadays,  most  network  configurations  include 

some type of middlebox that manages or alters the traffic exchanged by the 

ends.  Examples  include  firewalls,  NATs,  application  layer  gateways  or  load 

balancers. Although these devices often provide important functions that are 

essential to guarantee the security, efficiency or scalability of the network, their 

use may imply the violation of the end-to-end principle and introduce severe 

problems  to  some  applications  and  network  services.  The  detection  of 

middleboxes presents unique difficulties, mainly because they are designed to 

be  transparent  to  end  nodes.  However,  the  problem  is  not  at  all 

unapproachable.  This  paper  presents  a  novel  technique  that  allows  the 

detection  of  intermediate  devices  between  two  end  nodes,  based  on  the 

differences  found  between  the  packets  that  were  originally  created  by  the 

sender, and the packets that were received by the other end. 
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Abstract—In spite of being one of the master guidelines
in the design and the architecture of the Internet, the
importance of the end-to-end argument has diminished over
the years. Nowadays, most network configurations include
some type of middlebox that manages or alters the traffic
exchanged by the ends. Examples include firewalls, NATs,
application layer gateways or load balancers. Although
these devices often provide important functions that are
essential to guarantee the security, efficiency or scalability
of the network, their use may imply the violation of the
end-to-end principle and introduce severe problems to
some applications and network services. The detection of
middleboxes presents unique difficulties, mainly because
they are designed to be transparent to end nodes. However,
the problem is not at all unapproachable. This paper
presents a novel technique that allows the detection of
intermediate devices between two end nodes, based on the
differences found between the packets that were originally
created by the sender, and the packets that were received
by the other end.

I. INTRODUCTION

The end-to-end principle has been one of the master
guidelines in the architecture of the Internet. However,
its importance has diminished over the years. Nowadays,
in most network configurations, it is very common to
find some type of intermediate device that manages
or alters the traffic exchanged by the ends. Examples
include firewalls, NATs, application-layer gateways or
load balancers. Such devices, also known as middleboxes,
typically provide important functions that are essential
to guarantee the security, efficiency or scalability of a
network, but their presence often violates the end-to-
end principle and introduces severe problems to some
applications and network services that were designed
under the assumption that network traffic flows virtually
unaltered from one end to the other. As a consequence,
the correct operation of services designed according to
the Client/Server model, or the relatively new peer-to-
peer scheme, may require applications to have certain
knowledge of the underlying transport and network lay-
ers, which constitutes another violation of an important
principle, the independence of protocol layers.

Due to their transparent mode of operation, the pres-
ence of middleboxes is not easy to detect, particularly at

the application layer. This may require users to be aware
of the existence of intermediate devices and make the
appropriate configuration adjustments in order to access
or provide a particular network service.

Although the detection of middleboxes has a wide
variety of applications, from network reconnaissance to
the improvement of the user experience in the access to
network services, there is a significant lack of research
on the area. Nevertheless, the problem is not at all
unapproachable. This paper presents a novel technique
for the detection of intermediate devices, through the
analysis of the differences between the network packets
generated on one end of a communication, and the
packets that were actually received at the other end.

The remainder of this paper is organized as follows.
Section II discusses the concept of middlebox, describing
some of their types, features and characteristics. Section
III presents our contribution to the field, introducing a
novel technique for the detection of middleboxes and
the tools and methodology that we used to produce a
working implementation of it. Section IV reports the
results of our experiments with the implementation.
Finally, section V presents our conclusions, and discusses
open questions and future work.

II. MIDDLEBOXES

This section discusses the concept of middlebox,
describing the most popular types and their possible
features and characteristics.

A. Middlebox modeling

Given the wide variety of intermediate devices and the
way they process and alter the packets that flow through
them, it seems convenient to have a way to model them
and express their characteristics in a formal manner.
Some authors propose models to represent specific types
of devices, like firewalls [11], while others develop
generic models to represent network communication
mechanisms [10]. However, it is [7], who made the best
contribution to the field, presenting a specific model for
the representation of intermediate devices, using a simple
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and precise approach. In particular, the proposed model
is composed by six elements, that are described by its
authors as follows.

1) Interfaces and zones: a middlebox is composed
by one or more physical network interfaces, each of
which belongs to one or more logical network zones.
A zone represents a packet entry and exit point from
the perspective of middlebox functionality. A middlebox
may process packets differently based on their ingress
and egress zones.

2) Input preconditions: specify the types of packets
that are accepted by a middlebox for processing, and are
represented using a clause of the form I(P, p), which is
true if the headers and contents of packet p match certain
pattern P.

3) State data: refers to all the information that a
middlebox maintains about the flows and sessions that
it processes.

4) Processing rules: model the core functionality of a
middlebox. A processing rule specifies the action taken
by a middlebox when a particular condition becomes
true.

5) Auxiliary traffic: in addition to its core functional-
ity of transforming and forwarding packets, a middlebox
can generate additional traffic, either independently or
when triggered by a received packet.

6) Interest and State Fields: the interest fields of a
middlebox identify the packet fields of interest; in other
words, the protocol fields that it analyzes or modifies.
The state fields identify the subset of the interest fields
used by the middlebox in storing and retrieving state.
Although these fields can be deduced from the processing
rules, they are explicitly presented in the model because
they can highlight succinctly unexpected aspects of mid-
dlebox processing.

B. Features and characteristics
In addition to the previous model, it is possible to

classify middleboxes into distinct groups based on certain
characteristics. [6] proposes a set of eight variables that
can identify a given intermediate device. Such variables
are described as follows.

1) Protocol layer: specifies one or more protocol
layers at which a middlebox operates.

2) Functionality (Explicit vs. Implicit): specifies
whether the functionality provided by a middlebox is an
explicit design feature of the protocols (such an SMTP
relay) or an unforeseen add-on, possibly designed to
operate transparently (like a NAT device).

3) Instances (Single hop vs. multi-hop): specifies how
many instances of a middlebox can co-exist in the path
between two end nodes. Typical values are 1, 2, 2n, or
infinite.

4) Position (In-line vs. Call-out): specifies the posi-
tion of a middlebox in the network. Middleboxes may be
place in-line, on the data path, or may be located out of
it, requiring an explicit call-out triggered by some event.

5) Goals (Operation vs. Optimization): specifies
whether the middlebox performs an essential function,
without which end nodes can not communicate as de-
sired, or only an optimization.

6) Alteration capabilities: specifies whether the mid-
dlebox performs forwarding functions that leave the
packets virtually unaltered, or functions that alter the
packets in a non-trivial way or create side effects for the
end hosts. Examples of the former include switches or
routers. Examples of the latter include firewalls, NATs,
or proxies.

7) State management (Hard vs. Soft State): specifies
whether, upon a sudden lost of state information, sessions
continue to run, either normally or in some kind of
degraded mode (soft state), or fail and need to be re-
established from scratch (hard state).

8) Failure Handling (Fail-over vs. Restart): specifies
whether, in the event of a hard state middlebox failure,
the session is redirected to an alternative box that has a
copy of the state information, or it is forced to abort and
restart.

C. Types

From the model and characteristics introduced in the
previous sections, it seems clear that there is a wide
variety of intermediate devices, to the extend of their
purpose, as well as their impact on the networks where
they are deployed. This section presents a list of the most
common types of middleboxes [6].

1) Network Address Translators (NATs): a NAT is a
device that alters IP datagrams, modifying their source
and destination address. This is often done to facili-
tate communication between hosts that use private, non
routable, IP address spaces, and hosts with public IP
addresses.

NAT devices are not compatible with application layer
protocols that have dependencies with underlying IP
addresses. Examples include FTP or SIP. For this rea-
son, NATs are often combined with application layer
gateways, which are capable of making the necessary
changes to enable communications.

There is an special type of NAT systems, called
NAP-PT (NAT with Protocol Translator) [15], which
transforms IPv6 into IPv4 datagrams and vice versa.
However, its utilization has been deprecated by the IETF,
so they may not enjoy a wide deployment [5].
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2) Firewalls: a firewall is a system that is located
between two or more network segments and has the
ability to analyze the traffic that reaches its interfaces,
denying or authorizing its entry, according to a pre-
established security policy. Firewalls are probably one
of the most common middleboxes in IP networks.

In general, the traffic that traverses the firewall does
not suffer special alterations. However, when a firewall
drops a packet, it does not inform the original sender
of such event. This does not only cause connectivity
problems, but also makes it very difficult for the sender
to diagnose the problem.

Firewalls often operate at the network and transport
layer. Nevertheless, some specialized firewalls may also
operate at the application layer, making decisions based
on operation types or compliance to the standards [12].

3) SOCKS Gateways: a SOCKS gateway is a device
that acts as an intermediary between a client and a
server, typically in scenarios where a firewall blocks
direct communication between the two parties. These
gateways use the SOCKS protocol [9], which operates
at the application layer (OSI session layer), and are
accessible through TCP port 1080.

4) Tunnel Endpoints: they are the devices that create
or manage communication tunnels. They offer data en-
capsulation and transport services between two points
in a network. Tunnel endpoints alter the packets that
traverse the tunnel, first adding and later removing some
protocol headers. Although packets that enter one end
of the tunnel leave the other end unaltered, the presence
of the tunnel may affect the end-to-end principle, as the
transmitted packets could have experienced a different
per-hop treatment (QoS, routing, etc.), if the communi-
cation had not been tunneled.

5) Traffic Handlers: also known as packet classifiers,
markers or schedulers, are devices that classify, schedule
or tag the packets that traverse them, with the intent of
adapting network traffic to a specific policy. In particular,
these devices may tag packets to provide differentiated
services, alter their order or time sequences, or drop a
number of them based on different parameters and mea-
surements. Although their presence affects the end-to-end
principle, they do not introduce significant changes to the
best effort nature of the Internet.

6) Load balancers: a load balancer is a device that
redirects traffic destined to a particular network service,
to the appropriate physical or logical server, based on
the load conditions of the set of servers that provide the
same service. Load balancers can operate at the IP level,
rewriting destination addresses, or at the application
layer, making the appropriate changes to application data
or providing the necessary redirection mechanisms.

7) Application Layer Gateways: an application layer
gateway (ALG) is a device that is able to process
and modify application layer data found in network
packets that traverse it. Typically, their purpose is to
adapt application layer protocols to changes in other
layers like those performed by NAT devices. Other
uses include performing translations between different
application protocols or different versions of a protocol,
generating usage statistics or keeping event logs.

8) Transcoders: a transcoder is a device that performs
application layer data conversions. They are mainly used
in communications where the sender is unable to provide
data in a suitable format for the receiver. Examples of
transcoder use include conversion of voice data between
VoIP and cellular voice, bitrate video conversion or
image scaling.

9) Proxies: a proxy is a device that simultaneously
plays the role of a server and a client. They act as
clients of a network service, making requests on behalf
of the real client, and act as servers for such client,
forwarding the data provided by the real server. A proxy
may be used explicitly (clients are aware of its presence
and choose to access network services through it), or
implicitly (clients ignore its existence and the proxy
intercepts communications transparently). In both cases,
the traditional client/server network flow, is divided in
two sub-flows, one between the client and the proxy, and
the other between the proxy and the server.

10) Caching Proxies: a caching proxy is a device
that monitors client/server application layer sessions and
stores (caches) server responses in order to replay them
if the client issues identical requests in the future. Its
purpose is to improve response times and to prevent
redundant communications.

11) Performance Enhancing Proxies (PEPs): a PEP is
a device that is intended to improve end-to-end perfor-
mance of some network protocol. Typically PEP devices
work in pairs (like tunnel endpoints), breaking end-
to-end connections into multiple parts, using different
parameters or even different protocols, for each segment
of the communication. PEPs are very popular in TCP/IP
networks with satellite links, as TCP does not perform
well on links with large bandwidth-delay products.

12) Redirecters: a redirecter is a device that intercepts
communications initiated by a client and redirects them
to another server that, using the same protocols, provides
a different service than the one expected by the client.
Redirecters are often used in networks that, in order to
be accessed, require users to pay a fee, accept some legal
conditions or provide authentication details. Perhaps the
most common case are HTTP redirecters placed in air-
ports, hotels or universities, that do not let users access
the Internet until they have completed certain steps.



4

13) Intrusion Detection Systems (IDS): an IDS is a
device that monitors network traffic in order to detect
signs of an attack or a violation of a per-established
security policy. Due to their passive nature, traditional
IDS devices are not considered middleboxes. However,
there is a special type of IDS called in-line IDS (or
Intrusion Prevention System), that is placed at some
intermediate point in a communication path, and have the
ability to block traffic when a particular event is detected.
Although, in practical terms, in-line IDS devices could
be considered application layer firewalls, they have been
explicitly included in the list, due to their popularity in
the security field.

III. MIDDLEBOX DETECTION

The detection of intermediate devices has not been
studied thoroughly, even though it is of great importance
for many applications. Some authors have unsuccessfully
tried to define certain requirements for their discovery
[16]. Others have attempted to introduce mechanisms
to allow middleboxes to explicitly signal their presence
upon request, either through the standardization of new
TCP options [17], or using new protocols to interact
with such devices [14]. However all proposed techniques
require intermediate devices to be aware of the semantics
of the protocol or TCP option being used to detect them,
and more importantly, their willingness to disclose their
presence.

In this section, we present a novel technique for the
detection of middleboxes that does not require their
explicit cooperation. We also analyze the problems and
challenges that we encountered in the process of its
implementation.

A. Conventions and Assumptions

The proposed technique is based on the following
assumptions and conventions:
• The protocol for the detection of middleboxes is

carried out by two parties: an entity called an echo
client, denoted by Ec, and another entity called echo
server, denoted by Es.

• Ec has the ability to generate and transmit arbitrary
network packets.

• Es has the ability to capture any network packets
that arrive to its network interfaces.

• Ec and Es share some secret K, which has been
agreed via some out-of-band mechanism.

• There is a working communication path between Ec

and Es, and both can successfully establish a TCP
connection, initiated by the former, over some port
p.

• If they exist, middleboxes are located in the com-
munication path between Ec and Es, and perform
some kind of alteration to the traffic that traverses
them.

B. Detection Algorithm Overview
The following steps describe the general idea of the

proposed algorithm.
1) Ec establishes a TCP connection with Es over the

p port.
2) Ec and Es agree to establish an application layer

session.
3) Ec informs Es of the type of packets that is about

to send.
4) Es gets ready to capture packets of the requested

type, and tells the client that it may proceed with
the transmission.

5) Ec starts sending packets.
6) Es captures the packets as they reach its network

interfaces and provides a copy to Ec through the
TCP channel established in step 1.

7) Ec receives the copy of the packets returned by
the server and compares them with the packets
that were sent originally. Any non-trivial difference
found in the packets, will reveal the existence of
a middlebox at some point in the communication
path between Ec and Es.

8) When the client considers that enough packets have
been sent, the connection is closed.

C. The Nping Echo Protocol
In order to implement the basic idea that was outlined

in the previous section, it is necessary to design a proper
protocol. This section provides a detailed description
of such protocol, that we named Nping Echo Protocol
(NEP).

The protocol if formed by seven different types
of messages, described in detail below. All messages
have a common header H0 = {v, t, l, s, T}, where v
denotes the protocol version number (currently v = 1),
t indicates the type of message that follows the header,
l is the length of the message, s is a sequence number
and T is the current time at the sender. The following
list briefly describes all message types.

• Type NEP_HANDSHAKE_SERVER, which we
will denote by Hs. It is the first message in the
three-way handshake that client and server carry out
in order to establish a NEP session. It is sent by
the server and its purpose is to inform the client of
the version of the protocol supported by the server,
and to provide a timestamp and a random nonce for
security reasons.

• Type NEP_HANDSHAKE_CLIENT, Hc. Its pur-
pose is to indicate agreement on the protocol ver-
sion, to confirm the random nonce in Hs and to
provide another nonce value to be confirmed by the
server in its next message.

• Type NEP_HANDSHAKE_FINAL, Hf . Its purpose
is to confirm the random nonce in Hc and indicate
the successful establishment of the session.
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• Type NEP_PACKET_SPEC, Hp. Its purpose is to
inform the server of the characteristics of the pack-
ets that the client intends to transmit.

• Type NEP_READY, Hr. Its purpose is to indicate
that the server is ready to receive network packets
from the client.

• Type NEP_ECHO, He. Its purpose is to provide the
client with a copy of the state of one of his packets
when it reached the server.

• Type NEP_ERROR, Hx. Its purpose is to indicate
that, due to some error, the session needs to be
aborted.

• Type NEP_BYE, Hb. Its purpose is to signal the
successful termination of the current session.

The middlebox detection process is conceptually di-
vided into four different phases.

1) Phase 1, Side Channel Establishment Handshake:
where client and server agree to establish an echo ses-
sion. It involves the following steps:

1) Ec establishes a TCP connection with Es over port
p.

2) Es sends Hs = {H0, ns, Ms} to Ec, where ns
is a 256-bit random number, and Ms is a message
authentication code for Hs.

3) Ec verifies that Ms is correct and sends Hc =
{H0, ns, nc, Mc} to Es, where ns is the same
random number included in Hs, nc is another 256-
bit random number generated by Ec, and Mc is a
message authentication code for Hc.

4) Es verifies that Mc is correct and that the received
ns matches the ns in Hs. If the verification suc-
ceeds, Es sends Hf = {H0, nc, Mf} to Ec, where
ns is the random number included in Hc and Mc

is a message authentication code for Hf .
5) If Ec determines that Mf is correct and that the

received nc matches the nc in Hc, the session is
considered successfully established.

2) Phase 2, Parameter Exchange: where the client
informs the server of the packets that it intends to send.
It involves the following steps:

1) Ec sends Hp = {H0, s, c, Mp} to Es, where s is
the number of network packets that Es is planning
to send to Es, and c is a list of characteristics
(such as upper level protocol, port numbers, IP
identifiers, etc) that describe such packets, and Mp

is a message authentication code for Hp.
2) Es verifies that Mp is correct, gets ready to capture

packets from the wire that match the characteristics
in c, and sends Hr = {H0, Mr} to Es, to indicate
its readiness.

3) Phase 3, Packet Transmission: where the client
transmits the packets and the server returns a copy of
what it received. It involves the following steps:

1) Ec verifies the Mr in Hr, generates a set of
packets P with the characteristics that it previously
announced, and sends each packet p in P , one by
one, to Es, not over the side channel, but through
standard packet transmission mechanisms.

2) For each packet p′ that Es captures from the wire,
it determines if p′εP , based on the characteristics
of p′ and the characteristics listed in c.

3) If p′εP , Es sends a message He =
{H0, l, p

′, Me} to Es, where l is a number
that identifies the link-layer type in p′, and Me is
a message authentication code for He.

4) When Ec receives He, validates Me, and stores p′

for later processing.
5) When client or server find it appropriate, the ses-

sion is closed sending a message Hb = {H0,Mb}
to the other end.

4) Phase 4, Middlebox Detection: where the client
processes a received He message to detect the presence
of middleboxes in the path between him and the server.
It involves the following steps:

1) Extract p′ from the received He message.
2) Compare the value of every field in p′ with the

original packet p.
3) Any non-trivial difference between p′ and p indi-

cates the presence of a middlebox in the path.
Because the client has access to both versions of the
packet (the original packet before transmission, p, and
the version of the packet that was received by the server,
p′), it can compare them and spot any alterations made
in transit. Of course, not all differences indicate the
presence of middleboxes, as IP packets are expected to
present trivial alterations in transmissions that involve
multiple hops: for every hop, the TTL is decremented by
one unit and the checksum is recomputed. However, the
variation of the TTL itself already offers the client some
information: the number of routers the packet traversed
until it reached the server.

Any additional differences found between p′ and p
will evidence the presence of an intermediate device
in the path. In order to determine what type of device
has altered p, the client needs to have a database of
middlebox types and characteristics. In particular we
suggest a database of tuples mi = {T, L, F}, where T
is the type of device (NAT, ALG, proxy, etc.), L is the list
of layers at which type T operates, and F is the list of
“fields of interest” of the device. Based on the fields that
changed their value in transit, and the layer those fields
belong to, the client should be able to determine the type
T of the device that modified the packet in transit.

D. Security Problems and Implementation Challenges
Conceptually the operation of the protocol is simple,

but in practice, its implementation involves several prob-
lems and challenges that must be taken into account. This
section discusses some of those problems.
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1) Packet identification at the server side: one of the
main challenges that the echo server must face is the
to identify, among the set of packets that are captured
from the wire, which of them were generated by the
client. Any host connected to the Internet is exposed
to a continuous noise of unsolicited packets that arrive
to their network interfaces. Such traffic may be caused
by port scans [1], [2], or by misconfigured routers an
end systems [3], [18]. It seems clear that no echo server
connected to the Internet can expect to receive traffic only
from an echo client, and therefore, it must be capable to
distinguish legitimate packets from any noise.

To solve this problem, we included the Hp message
in the protocol. Such message is sent by the client
and its purpose is to provide the server with a list of
characteristics of the network packets that the client is
about to send. Based on such characteristics, the server
can discard packets that do not match them. However, the
server must tolerate a certain degree of variability, as the
presence of middleboxes in the communication path can
cause alterations of the packets in transit, and therefore,
not all characteristics may survive the transmission. In
particular, we propose to classify captured packets into
two groups, noise and legitimate, through an scoring
algorithm. Such algorithm may be described as follows:

Let p be a network packet, F ={f1, f2, ...., fn} the
set of the n fields that form p, L ={l1, l2, ...., ln} the
set of lengths of the fields in F expressed in octets, and
V ={v1, v2, ...., vn}, the set of specific values that the
fields in F take for a given p.

1) Ec and Es perform the three-way handshake that
establishes a NEP session.

2) Ec sends Hp = {H0, s, c, Mp} to Hs where c =
{F,L, V }

3) Es indicates that is ready to receive packet p,
through an Hr message sent to Ec.

4) Ec builds a packet p formed by n fields with the
values in V and sends p to Es.

5) In transit, p traverses one or more intermediate
devices that alter the value of one or more fields.

6) Es captures a packet p′, formed by fields with
values V ′.

7) Es computes a score for p′ as follows: s(p′) =
n∑

i=1

1

∀ vi = v′i
8) If s(p′) exceeds some threshold tp, Es determines

that packet p′ has been generated by Ec, and sends
a copy of p′ to Ec, encapsulated in an He message.

The operation performed by Es in step 7 is the score
of a given packet based on its similarity with the char-
acteristics provided by the client in the Hp message. In
particular, it reflects the number of fields that are equal,
which certainly offers information about their similarity.
However, not all matches should contribute equally to
the score, as the probability of a random value match
varies inversely with the length of the field. Statistically,

a field of length n octets will match in one out of 28n

packets. For this reason, the scoring operation needs to
be modified, so it takes lengths into account. A possible
approach could be:

s(p) =
n∑

i=1

2li·8 ∀ vi = v′i

In other words, the sum of the inverse of the proba-
bilities of a random match. One major drawback of this
approach is that the score value would vary a lot, which
makes it difficult to choose the threshold value tp that a
packet must score in order to be considered legitimate.
Another possible solution would be to compute s(p) as
follows:

s(p) =
n∑

i=1

li ∀ vi = v′i

In this case, the contribution of a field to the
score varies linearly with its length, what reduces the
supremacy of long fields. We establish one exception to
this rule: matches of application layer data, for which
we propose an upper bound of 4. In other words, when
the list of characteristics provided by Ec in Hp contains
information about a payload above the transport layer,
the maximum contribution of any positive match will
be limited to the contribution of an equivalent 4-octet
field. This prevents very common payloads like “GET
/ HTTP/1.1\r\nHost:” from causing the score to exceed
the tp threshold even when no other fields matched.

Nevertheless, it does not make sense to consider all
fields with the same length equal, as it is very common
for network protocols to have fields with fixed or easily
predictable values. Examples include header lengths,
flags or protocol identifiers. Consequently, s(p) needs
to be modified so it takes into account that fields that
take random values or values that are difficult to predict
by a third party without access to the traffic sent by
Ec, are more significant that others. We propose the
addition of a new element to the formula, a weighting
factor that adjusts the importance of each particular
field. We therefore define a new set of weighting factors
W = {w1, w2, ..., wn}, where wi is the weight for field
fi in F . With this modification, s(p) would be computed
as follows:

s(p) =
n∑

i=1

li � wi ∀ vi = v′i

This approach offers a great flexibility for the
implementation, something that is essential, due
to the wide variety of protocols and header fields.
The value taken by each wi in W depends on the
syntax and semantics of each protocol field. In table
I we summarize the weights that we used in our
implementation. However, we do not claim that our
selection is optimal, leaving that as a future line of work.

There is one last issue with this scheme. The introduc-
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Protocol Field Weight
IPv4 TOS 1.0
IPv4 Protocol 0.9
IPv4 Identifier 2.5
IPv4 Fragment Offset 1.0
IPv6 Traffic Class 1.0
IPv6 Flow Label 2.5
IPv6 Next Header 0.9
TCP Source Port 1.5
TCP Destination Port 1.0
TCP Sequence 2.0
TCP Acknowledgement 1.0
TCP Flags 1.0
TCP Window 1.0
TCP Urgent Pointer 1.0

ICMP Type 1.0
ICMP Code 1.0
UDP Source Port 1.5
UDP Destination Port 1.0
Other Payload 1.0

Table I
SUMMARY OF WEIGHTING FACTORS

tion of weighting factors assumes that the contribution of
a given matched field to the score is always the same,
independently of the value that produced the match.
However, some network protocols choose special field
values to indicate that some functionality is not being
used. One good example of it is the Acknowledgement
field in TCP, that takes a value of zero whenever the ACK
flag is not set. In that case, matches of the value zero
should not influence the score as much as other values
that are less common and more difficult to predict. For
this reason, we add one last element to s(p), as follows:

s(p) =
n∑

i=1

li � wi � z(fi, v′i) ∀ vi = v′i , where

z(fi, v
′
i) =

{
wz if v′i is a default value of fi

1 otherwise
,

and wz is the special case weighting factor for which
0 6 wz < 1.

2) Multi-session support: another problem that an
echo server must face is the provision of the service
to multiple, simultaneous clients. This introduces some
challenges when the server has to determine which
packets belong to which particular client. The most
obvious solution would be to select those packets whose
source IP address matches the address observed from
the client’s side channel establishment. However, such
condition is not enough to guarantee the accuracy of the
identification, as the side channel itself involves certain
TCP traffic exchanged between client and server that
must be ignored. In addition, one client may decide to
establish multiple session in parallel, what would result
in many packets with the same source and destination
IP address but that belong to different sessions. Same
applies to different clients that are behind a single NAT

device.

It could also be the case that some client decides to
use the echo service to determine if a packet with an
spoofed IP address can reach the server. In this case,
the source IP address observed by the server would not
match the client’s. In the same way, packets should not
require to be addressed to the server’s IP address, as the
server could be run inside some intermediate device, like
a router, placed along the path.

It seems clear that while the IP address used by the
client to establish the side channel can be a useful piece
of information for the server in some cases, it must not
be relied upon, as there are some scenarios in which such
information can not be used reliably.

Our implementation does not take IP addresses into
account because a minor modification to the scoring
algorithm presented in the previous section lets servers
handle simultaneous echo sessions and match captured
packets with the appropriate client in an effective manner.
Let U = {u1, u2, ..., uk} be a list of k clients that
have an active echo session with the server (sorted oldest
first), and C = {c1, c2, ..., ck} the set of characteristics,
cj = {Fj , Lj , Vj}, provided by each client in the Hp

message, the process is as follows:
1) Es captures a packet p′, formed by fields with

values V ′.
2) For each cj in C, Es computes a score for p′ as

follows: s(p′, cj) =
n∑

i=1

li � wi � z(fi, v′i) ∀ vi = v′i

where viεVj
3) Es selects the client with the highest score for

packet p, sm = s(p′, cm).
4) If sm exceeds some threshold tp, Es determines

that packet p′ has been generated by the user um,
and sends a copy of p′, encapsulated in an He

message, through the side channel established with
sm.

Although the algorithm does not guarantee a total accu-
racy, we believe that, providing clients select some of
their packet characteristics randomly, the probability of
misidentifying packets is reasonably low. Nevertheless,
a malicious client with the ability to guess all packet
characteristics provided by another client, could include
the same c in its Hp message and therefore, obtain the
same score for each packet. To alleviate this problem
we propose that the server resolves ties by awarding the
packet to the client that connected first.

3) Significant protocol layers: another aspect to con-
sider in the design of the protocol is which network
layers are significant to the process. It seems reasonable
to take the network and transport layers into account, as
they play a key role in today’s networks, their protocol
headers are delivered end-to-end, and there is a wide
variety of middleboxes that operate at that level.
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Link layer headers, on the other hand, are only prop-
agated in a point-to-point fashion, so unless client and
server are connected to the same subnet, it does not make
much sense for the client to provide details about the link
layer parameters that it intends to use. Nevertheless, it
could be interesting if echo servers included link layer
headers in He packets. A possible usage scenario would
be a server that is located in a subnet with more than
one router. If the client has access to the link layer source
address, it could be able to determine if packets reach the
server forwarded by different devices. Same applies to
devices performing load balancing at the link layer [4]. It
should be noted that in these cases, the server would have
to tell the client explicitly which link-layer protocol is in
operation, so the client can interpret the data correctly,
and determine the offset where the network layer header
starts. That is the reason why, in our implementation,
message He includes a link layer identifier.

The application layer is also a good candidate to be
considered for the protocol. If the server also included a
packet’s application data in He messages, clients would
be able to detect application layer gateways or any other
type of middlebox that alters data at that level. Although
the implementation is straightforward for connectionless
protocols like UDP or ICMP, it presents some challenges
when it comes to connection-oriented protocols like TCP.
In order for a given client to transmit data over TCP, it
must first establish a connection, through the standard
TCP three-way handshake. Therefore, the client needs to
be able to generate custom TCP packets for that matter.
Let Es be a host that offers an echo service and also
some other network service through port n, a client Ec

would follow these steps:
1) Generate a TCP packet with the SYN flag set and

a target port number n and send it to Es.
2) Start capturing packets that arrive to its network

interfaces.
3) Capture the TCP packet with the SYN and ACK

flags set that Es sends in response.
4) Generate and send a TCP packet with the ACK flag

set, and the appropriate sequence and acknowledg-
ment numbers.

5) Transmit any application layer data in additional
TCP packets, with the appropriate parameters for
the connection.

This has a significant impact on the complexity of a
client’s implementation, as it requires echo clients to
emulate TCP stacks, at least partially, keeping track of
sequence and acknowledgment numbers and handling
packet losses and retransmissions. However, a client
can not simply invoke system calls such as connect(),
as it needs to know the value of the different header
fields at the network and transport layers, in order to
produce meaningful Hp messages. It is true that we
could relax the restriction that we imposed to application
layer matches in section III-D1 so payloads above the

transport layer contribute to the score proportionally to
their length. This would allow clients to establish TCP
connections using standard system calls and produce
Hp messages that only contain information about the
application layer. Such Hp messages would contain
enough information for the scoring algorithm, providing
the transmitted payloads contain enough entropy to avoid
collisions with other payloads. Nevertheless, our current
implementation does not relax the described restriction,
nor does yet establish full TCP connections. For this
reason, changes in application layer data may only be
observed when non-connection oriented transport proto-
cols, such as UDP, are used.

4) Security: the fact that the echo server captures
and retransmits packets that reach its network interfaces,
makes it an attractive target for attackers that want to
access the server’s traffic. For this reason, it is important
to take security into account in all phases of the protocol.
In this section, we will discuss the potential security
problems, and the measures we have taken to mitigate
them. For this matter, we define two different attacker
models, to reflect what we believe are two common uses
of the protocol. They differ only in whether the attacker
knows the secret K. We assume that the attacker always
has control of the network, but may not break encryption
or forge message authentication codes.

• Model 1: trusted clients/private server.
– The server and all legitimate clients know a

secret K and are honest. No other party knows
K.

• Model 2: untrusted clients/public server.
– Secret K is made public, so anyone may use

the server. Clients are not assumed to be honest.

We know define the expected security properties of the
protocol. In general, the protocol seeks to ensure con-
fidentiality, integrity, and authentication. Nevertheless,
Model 1 has more stringent security properties than
Model 2. For Model 1, we expect the following security
properties to hold:
• Property 1A: an attacker cannot make use of the

echo service.
• Property 1B: an attacker cannot convince a client

that it is a legitimate server.
• Property 1C: an attacker cannot modify traffic

without detection.
• Property 1D: once a client and a server have

established a session, an attacker cannot access the
information exchanged during that session.

• Property 1E: when a connection between a le-
gitimate client and a server is ended, it is ended
from the point of view of both endpoints (mutual
termination). In particular, an attacker cannot keep
one end of a session alive.
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In Model 2, the attacker knows K, so ensuring confiden-
tiality, integrity, and authentication is impossible. But a
malicious client should not be able to deny service to
other clients or to gain access to more information than
any honest client. For Model 2, these are the expected
security properties:
• Property 2A: a malicious client cannot interfere

with other client sessions.
• Property 2B: a malicious client can only see cap-

tured packets that correspond to its own, not those of
other clients, and especially not any traffic unrelated
to the echo protocol.

The first three properties for Model 1 are satisfied by
the message authentication code that is appended to
every message of the protocol. As the attacker does
not know K, it is impossible for him to produce valid
messages. In particular, the attacker cannot produce valid
Hc messages, so it is becomes impossible to establish
sessions with a server (property 1A); he cannot produce
valid Hs or Hf messages so he is not able to act as
a legitimate server (property 1B); and he cannot alter
legitimate messages without being detected because he
is not able to recompute message authentication codes
(property 1C).

Replay attacks are ineffective. The presence of nonces
in the three-way handshake guarantees the freshness of
Hc and Hf . In addition, every message contains a times-
tamp and a sequence number, which allows the receiving
party to verify that they belong to the current session.
Furthermore, all cryptographic keys are influenced by
the nonces (see Section III-D5), so it is highly unlikely
that two different sessions use the same keys, which
makes it virtually impossible for an attacker to replay
any message.

The fourth property is satisfied by the use of encryp-
tion for all messages, except for the first three (which
correspond to the three-way handshake session estab-
lishment). In particular, our implementation encrypts
messages after the appropriate message authentication
code has been computed. Such authentication code is
excluded from the encryption, and is transmitted in clear
text.

Property 1E is satisfied by the use of the special
messages Ex and Eb. The former is produced and sent
by one of the parties to indicate that there was some error
that caused the session to terminate. The latter is sent to
indicate that the sender wishes to end the session.

In model 2, security properties are harder to satisfy.
Property 2A is impossible to meet if the attacker has the
ability to intercept a client’s traffic. This is a problem for
virtually all application layer protocols, as an attacker
may easily tear down existing transport layer sessions.
Even if protocols like IPSec are in operation, malicious
users can choose to block traffic in any direction, what

results in a denial of service. Conscious of this limitation,
we relax our initial assumption to state that the attacker
may have access to the traffic produced by the client or
the server, but does not have the ability to intercept it
or supplant their identity at the network and transport
layers. In other words, the attacker may be able to sniff
the traffic exchanged by legitimate clients and servers but
may not inject traffic in the network with IP addresses
for which he is not the legitimate holder.

In this new scenario, Property 2A is satisfied by
the server, as it keeps separate state information for
each client, such as nonces, timestamps and sequence
numbers. Even though the attacker has access to such
information and could produce valid message authen-
tication codes, he cannot inject messages into existing
sessions, as he is not able to transmit data on behalf of
other clients.

Property 2B has important implications. Our main con-
cern is to prevent malicious clients from accessing other
traffic than their own. Once the server has determined
that a particular captured packet belongs to a given client,
such packet is echoed and never processed again. For this
reason, if an attacker manages to convince the server that
certain packets are his, such packets will be echoed to
the attacker, and not to the legitimate client, what would
cause a denial of service for the latter.

Because the attacker has access to any client’s Hp

message, he can easily establish a session with the server
and supply the same list of packet characteristics. This
would cause the attacker and the legitimate client to
obtain the exact same score for every packet. As we
mentioned above, the server resolves ties by awarding
the packet to the client that connected first. One could
think that this solution prevents attackers from stealing
a client’s packets. However, the time at which the client
and the attacker established a connection with the server
is not a valid piece of information to base decisions on.
Doing so would allow the following attack.

1) An attacker, Ea, establishes a TCP connection with
Es.

2) Ea and Es establish an echo session exchanging
messages Hs, Hc, and Hf .

3) Ea waits until the victim, Ec, establishes a TCP
connection and an echo session with Es and sends
an Hp message.

4) Ea captures the Hp sent by Ec.
5) Ea extracts the list of characteristics c from Hp,

generates its own Hp message with the same c,
and sends it to Es.

At this point, the server holds information about two
connected clients, Ea and Ec, both with the same c.
When Ec starts transmitting network packets, the server
will capture them and apply the score operation to each
one. Because Ea and Ec have the same c, they will obtain
the same score for every packet, but since Ea connected
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first, packets will be echoed to the attacker and not to
the legitimate client.

To mitigate the attack we suggest making the server
record the time at which Hp messages are received and
resolve ties based on such time, awarding packets to
the client whose Hp arrived first. This does not solve
the problem completely, as the attacker might know a
fastest network path to reach the server, and could be
able to capture the victim’s Hp message and make his
own Hp arrive to Es first. However, we believe the
solution offers a reasonable compromise between ease
of implementation and security.

We are also concerned about a particularly dangerous
situation: an attacker that manages to receive He packets
that contain traffic that is unrelated to the echo protocol.
In other words, an attacker that is able to convince the
server that any packet that reaches its network interfaces
has been generated by him. This has obvious security
implications as it would allow the attacker to sniff the
server’s traffic remotely, from any network location.
The attack could be easily carried out if no restrictions
are placed in Hp messages. For example, an attacker
could send a list of characteristics like {IPprotocol =
6, IPprotocol = 6, ..., IPprotocol = 6}, which means,
“layer above IP equals TCP”. This would increase the
attacker’s score multiple times for any TCP packet that
reaches the server. If enough duplicate tests are provided,
the score will exceed the threshold value tp, causing the
server to send a copy of every TCP packet to the attacker.
Another possibility would be to provide {ICMPtype =
0, ICMPtype = 1, ..., ICMPtype = 255}, what would
increase the attacker’s score for any ICMP message,
regardless of its “Type” field.

To solve this problem, we suggest prohibiting multiple
tests with the same left-hand side. Additionally, servers
should verify that the characteristics provided by clients
are reasonable. Examples include, verifying that IPv4
or IPv6 characteristics are specified, but not both at the
same time, or verifying that there are characteristics for
only one transport layer protocol, not many.

5) Cryptographic keys: our implementation of the
protocol uses a set of five cryptographic keys per client
session. All keys are derived from the K secret that Ec

and Es share, the random nonces exchanged during the
three-way handshake (nc and ns), and a unique type
identifier for each key. There is one encryption key
and one message authentication key for each direction
(Ec → Es and Es → Ec). Additionally, there is an
special key used for the authentication of message Hs,
that is generated and used temporarily due to the absence
of the client-side generated nonce at the time message
Hs is created.

The key derivation is performed through a slight
variation of the PBKDF1 algorithm [8], which uses the

SHA-256 hash function. A pseudo-code representation is
presented in Alg. 1. Note that N = {ns, nc}, except for
the authentication of Hs, where N = {ns, 0}.

Algorithm 1 Key derivation Process

h=SHA256 (K + N + Key_Type_Id )
do (1000 t i m e s ) {

h=SHA256 ( h ) ;
}

The implementation uses AES-128 for encryption and
HMAC-SHA256 for message authentication. In those
cases where the generated keys are longer than required,
the last 256− x bits of key material are discarded (least
significant bits), where x is the desired key length.

E. Usage Scenarios

This section describes some examples of usage scenar-
ios for the middlebox detection protocol described above.
Note that the proposed scenarios typically require the
server to be located out of the client’s network (Fig. 1).
Although this is not true for all cases, for simplicity we
have omitted that kind of details from the descriptions.

1) Scenario 1, detect address translation: clients may
detect the presence of a NAT device in their local network
if they observe that their packets reach the server with
a different source IP address. In such case. the observed
address would be the NAT’s public IP (or the last NAT’s
public address if there are multiple nested NAT devices).

2) Scenario 2, list blocked port numbers: clients may
determine which ports are being blocked by a firewall
by sending packets to all possible 216 port numbers
on the server. Packets for which an He response was
received indicate that the firewall does not block the
corresponding port.

3) Scenario 3, detect blocked protocols or message
types: clients may determine if a particular protocol or
message type is being blocked by a firewall, by sending
packets with the desired characteristics and checking if
they were blocked in transit, based on the presence or
absence of He messages. A typical example may be to

Figure 1. Typical setup.
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detect the ability to send ICMP Echo requests to the
Internet.

4) Scenario 4, diagnose connectivity problems: when
the establishment of a TCP connection times out, clients
may determine if the problem occurred because the
SYN packet never reached the server, because the SYN-
ACK did not reach the client, etc. This can be easily
extrapolated to other protocols.

5) Scenario 5, detect path MTU through IP fragmen-
tation: Path MTU Discovery (PMTUD) does not work
if some intermediate firewall blocks ICMP Destination
Unreachable messages. In that case, a client may deter-
mine a path’s minimum MTU by sending IP datagrams
of various sizes, without the DF bit set, and checking
received He messages for signs of fragmentation along
the path.

6) Scenario 6, detect anti-spoofing policies: clients
may test whether their network gateway filters out
spoofed packets (packets leaving the network whose
source address does not belong to the network address
space), by sending IP datagrams with spoofed IP ad-
dresses, and checking if such datagrams reach the server.

7) Scenario 7, detect in-line IDSs: clients may detect
the presence of an in-line Intrusion Detection System by
sending packets that are known to trigger IDS alarms to
the server. The fact that one or more packets do not reach
the server could indicate the presence of an in-line IDS
that prevents attacks by blocking suspicious traffic.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our implementation of the
protocol through four different experiments.

A. Experiment 1: Router
In this experiment we set up a client, Ec, and a

server, Es, located in two different subnets that are
interconnected by a router, Er. All three participants
are regular desktop machines running a GNU/Linux
operating system. Er has two network interfaces, Ic and
Is which are connected to the client’s subnet and the
server’s subnet respectively. We configure Ec to send five
ICMP Echo requests to Es. After we run the experiment,
from the client’s perspective, we observe the following:
• ICMP Echo packets reached the server’s machine

successfully: Ec received five He messages which
contained the ICMP Echo requests that arrived to
the server’s network interface.

• Server’s machine responded to the requests with
ICMP Echo replies: Ec captured ICMP Echo replies
that contained the appropriate ICMP message iden-
tifiers, sequence numbers, and IP source addresses.

• There is a network distance of one hop between
Ec and Es: the packets included in the received
He messages had a TTL of one unit less than the
originals.

B. Experiment 2: Firewall

This experiment is a modification of the previous one,
where the router now also assumes the role of a firewall.
At the server side, we set up a trivial network service that
accepts connections on port k. We configure Ec to send
10 TCP packets with the SYN flag set and a destination
port number that equals k. We set up firewall rules in Er

to allow forwarding of any IP datagrams except those that
contain a TCP header whose source port matches k. After
we run the experiment, from the client’s perspective, we
observe the following:
• TCP packets issued by Ec reached the server’s

machine successfully: Ec received 10 He messages
which contained such packets.

• There is a network firewall between Ec and Es that
drops some packets: the client did not receive any
response from the server, even though the trivial
network service was supposed to send TCP packets
with the SYN and ACK flags set in response, or at
least with the RST flag set to refuse the connection.

C. Experiment 3: NAT device

In this experiment we modify Er to provide address
translation between the two subnets. We configure Ec

to send five UDP packets with a random payload to a
closed port on Es. After we run the experiment, from
the client’s perspective, we observe the following:
• All UDP packets reached the server’s machine

successfully: Ec received five He messages which
contained the packets.

• Server’s machine responded to the requests with
ICMP Port Unreachable messages: Ec captured five
ICMP error messages that contained the original
UDP datagrams that caused the error.

• There is NAT device between Ec and Es, that
operates at the network and transport layers: the
packets included in the received He messages had
a different source IP address and a different source
port number than the originals.

• The NAT device handles ICMP error messages
correctly: source IP addresses, source port numbers,
and checksums found in the datagrams encapsulated
inside ICMP messages were altered accordingly by
the NAT device. Even when we performed a second
experiment where we instructed Ec to set the UDP
checksum to zero, the NAT device behaved correctly
and did not attempt to recompute checksums.

D. Experiment 4: HTTP caching proxy

In this experiment we replace the Er device running
GNU/Linux with a machine Ep that runs an ISA Server
2006 on a Microsoft Windows 2003 Server system. Ep is
configured to act as a transparent HTTP caching proxy.
We configure Ec to send 10 TCP packets with the SYN
flag set. Half of the packets are destined to port 80
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(HTTP) and the other half to port 22 (SSH). Additionally,
at the server side, we set up a network service that
accepts connections on port 80 and port 22. After we run
the experiment, from the client’s perspective, we observe
the following:
• All TCP packets destined to port 22 reached the

server: Ec received five He messages which con-
tained such packets.

• None of the packets destined to port 80 reached the
server: Ec did not receive He messages for those
packets.

• Server’s machine responded to all port 22 requests:
Ec captured five TCP packets with the SYN-ACK
flags set and source port 22.

• Some intermediate device forged a response to one
of the packets destined to port 80: Ec captured a
valid response to the first TCP packet (SYN-ACK
flags and proper acknowledgment number) but such
response presented significant differences with the
packets received from port 22, what suggests that
such responses were produced by two different end
systems. In particular, responses from port 22 had a
TTL value of 63, an IP Identification value of zero,
and a TCP window size of 14600 bytes, while the
response from port 80 had a TTL value of 128, non-
zero IP Identification values and a TCP window size
of 16384.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel technique
for the detection of intermediate devices in the path
between two end nodes. We have suggested a client/
server approach where the client, assisted by the server,
gets access to two versions of the same network packet:
the one generated by the sender, and the packet that
was actually received at the other end. The analysis of
the differences between those two packets allows the
detection of middleboxes that produced alterations to
the packets that traversed them, without requiring their
explicit cooperation.

We have not only presented the general outline of
the technique, but a complete design of a protocol that
achieves our goals. We have analyzed its main problems
and security concerns, and provided solutions to mitigate
them. We also demonstrated the flexibility of the protocol
and suggested many different applications and usage
scenarios. It must be noted that the theoretical concepts
that were introduced in this document are backed up by
an actual implementation, the Nping tool, which is freely
available under an open source license [13]. Anyone may
download the application and test the client side against
a publicly accessible instance of the echo server located
at echo.nmap.org.

However, neither the protocol nor the implementation
are fully complete. Our proposal should be considered

an initial approach to the problem since there are several
issues that have been left out of the scope of this paper.
First of all, effort must be put in the creation of a database
of middlebox models to assist clients in the identification
of particular intermediate device types. Secondly, in our
protocol, the role of the sender is always assumed by
the client side. This limits the ability to detect devices
that alter flows in the opposite direction (server to
client). Allowing clients and servers to exchange their
roles dynamically would improve the overall detection
capabilities of the system. Finally, there is certainly room
for improvement in the way our implementation handles
application layer sessions. Its inability to establish full
TCP connections limits the types of middleboxes that
can be detected. However, this an area we are working
on so we expect to offer such functionality in the near
future.
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1 INTRODUCTION

Troubleshooting routing and �rewall issues is a common task nowadays. The
scenario is generally that some network tra�c should be �owing but isn't. The
causes of problem can range from routing issues to network �rewall to host-
based �rewalls to all sorts of other strange things. It is usually the "middle
box" problem that is the hardest to �nd.

Suppose there is some host with a TCP service listening that you can't con-
nect to for an unknown reason. If a Nmap -sS scan doesn't show the port as
open there are a multitude of possible problems. Maybe the SYN packet never
made it because of some �rewall in the middle. Maybe the SYN did make it but
the SYN+ACK got dropped on its way back to you. Maybe the TTL expired
in transit but the ICMP message got blocked by another �rewall before making
it back to you. Maybe the SYN made it but some intermediate host forged a
reset packet to snipe the connection before the SYN+ACK made it back to you.

When things like the above are going on it is often the case that even
nping can't track down the problem alone. One generally has to turn to Wire-
shark/tcpdump on one station and nping on the other but sometimes it may be
quite di�cult to coordinate, specially when the person at the remote host does
not even know what an IP address is.

To solve this problem, Nping implements a new mode of operation, called
"Echo mode", which provides a combination of a packet generator and a remote
sni�er.

The Echo mode is based on a client/server architecture. Both ends run
Nping, one of them in server mode and the other in client mode. The way it
works is: the Nping client performs an initial handshake with the server over
some standard port (creating a side-channel). Then it noti�es the server what
packets are about to be sent. The server sets up a liberal BPF �lter that cap-
tures those packets, and starts listening. When the server receives a packet it
encapsulates it (including the link layer frame) into our own protocol packet
and sends it back to the nping client. This would be essentially like running
tcpdump on the remote machine and having it report back the packets you sent
to it with Nping.

By having the side-channel to talk to the server, things like NAT would be-
come immediately apparent because you'd see your source IP (and sometimes
port) change. Things like "packet shapers" that change TCP window sizes
transparently between hosts would turn up. It would be easy to tell if the traf-
�c is being dropped in transit and never gets to the box. It would also be easy to
tell if the tra�c does make it to the box but the reply never makes it back to you.

In general, it would be like sending a postal package to someone and having
them email you a photo of the package when they get it. If you think your
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packages are being abused by the parcel service then having someone on the
other end to send information back is a great way to uncover what is going on.

2 NPING ECHO PROTOCOL SPECIFICATION

2.1 General Message Format

The following diagram describes the general format of the NEP messages.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version | Message Type | Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

. .

. DATA .

. .

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

. .

. Message Authentication Code .

. .

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: General Message Format

There are 7 di�erent kinds of packets:

1. NEP_HANDSHAKE_SERVER: (S->C) Informs the client of the
highest version it supports and sends the server's authentication parame-
ters.

2. NEP_HANDSHAKE_CLIENT: (C->S) Informs the server of the
highest version it supports and sends the initial authentication parameters.

3. NEP_HANDSHAKE_FINAL: (S->C) Echoes server nonce back to
the server.

4. NEP_PACKET_SPEC: (C->S) Tells the server what kind of packets
we are planning to send.
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5. NEP_READY: (S->C) Tells the client that the server is ready to start
receiving packets.

6. NEP_ECHO: (S->C) Contains the packet that the server receives from
the client.

7. NEP_ERROR: (C->S or S->C) Indicates an error and terminates the
session.

2.2 Field Description

• Version: 8 bits

� Current version of the protocol. This document covers version 0x01.

• Message type: 8 bits

� Integer that indicates the type of packet. It must be one of the type
codes de�ned in section 2.3.

• Total Length: 16 bits

� Length of the entire packet, measured in 32bit words. Value must be
in NETWORK byte order.

• Sequence Number: 32 bits

� Packet sequence number, relative to the sender. Initially this �eld
is set to a random value, and then it is incremented by one for each
packet that is sent in a given session. The counter must wrap back to
zero after it reaches (2^32)-1. This �eld is intended to provide �ow
tracking and basic protection against replay attacks.

• Timestamp: 32 bits

� Current time of the sender. This time is expressed as the number of
seconds elapsed since 00:00, 01/01/1970 UTC (epoch time).

• Reserved: 32 bits

� Reserved for future use. Reserved �elds have been added for two rea-
sons: to allow future extension of the protocol and to make the header
a multiple of 128 bits needed to satisfy AES encryption requirements
in block size.

• Data: variable length

� Message speci�c data.
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• Message Authentication Code: 256 bits

� Code that provides integrity and authentication to the rest of the
packet. For this, the HMAC-SHA256 suite must be used. The com-
putation of the code includes the whole plain-text message until the
�rst byte of the Message Authentication Code �eld.

2.3 Message type codes

The following table lists the type code assigned to each message.

Message Type code

NEP_HANDSHAKE_SERVER 0x01
NEP_HANDSHAKE_CLIENT 0x02
NEP_HANDSHAKE_FINAL 0x03

NEP_PACKET_SPEC 0x04
NEP_READY 0x05
NEP_ECHO 0x06
NEP_ERROR 0x07

Table 1: Message type codes

2.4 Message NEP_HANDSHAKE_SERVER

The NEP_HANDSHAKE_SERVER message is sent by the server and it re-
quests client's authentication. The packet informs the client of the latest version
of the protocol that the server supports and provides the appropriate informa-
tion for the client authentication process.

The NEP_HANDSHAKE_SERVER message establishes the following:

• The identity of the server and that the message was generated by that
server.

• That the message was intended for the client.

• The integrity and originality of the message.

The format of the NEP_HANDSHAKE_SERVER message is the following:
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version | Message Type | Total Length |

1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |

2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |

3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |

4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

5 +-- --+
| |

6 +-- --+
| |

7 +-- --+
| Server Nonce |

8 +-- --+
| |

9 +-- --+
| |

10 +-- --+
| |

11 +-- --+
| |

12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

13 + --+
| |

14 +-- Reserved --+
| |

15 +-- --+
| |

16 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

. . .

. . Message Authentication Code .

. . .
| |

24 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: NEP_HANDSHAKE_SERVER message format

• Server Nonce: 256 bits

� Random number. This number must be generated using a crypto-
graphically secure PRNG and must not be reused. This is the data
that should be used by the client to construct its cipher block initial-
ization vector.

• Reserved: 120 bits

� Reserved for future use.

• HMAC-SHA256: 256 bits

� Message authentication code that covers the entire packet, from byte
0 to the last byte of the last reserved �eld. The code is computed
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over the plaintext, before the encryption is applied to part of the
packet.

2.5 Message NEP_HANDSHAKE_CLIENT

The NEP_HANDSHAKE_CLIENT message is sent by the client and it pro-
vides the appropriate information for client-side authentication. This type of
message is generated only if the previous NEP_HANDSHAKE_CLIENT mes-
sage contains a valid message authentication code.

The NEP_HANDSHAKE_CLIENT message establishes the following:

• The identity of the client and that reply message has been generated by
the client.

• That the message was intended for the server.

• The integrity and originaltity of the reply.

The format of the NEP_HANDSHAKE_CLIENT message is the following:
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version | Message Type | Total Length |

1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |

2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |

3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |

4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

5 +-- --+
| |

6 +-- --+
| |

7 +-- --+
| Server Nonce |

8 +-- --+
| |

9 +-- --+
| |

10 +-- --+
| |

11 +-- --+
| |

12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

13 +-- --+
| |

14 +-- --+
| |

15 +-- --+
| Client Nonce |

16 +-- --+
| |

17 +-- --+
| |

18 +-- --+
| |

19 +-- --+
| |

20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
###################### ENCRYPTION STARTS HERE #######################

20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

21 +-- --+
| |

22 +-- Partner IP address --+
| |

23 +-- --+
| |

24 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Version | |

25 +---------------+ --+
| |

26 +-- Reserved --+
| |

27 +-- --+
| |

28 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
####################### ENCRYPTION ENDS HERE #######################

28 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

. . .

. . Message Authentication Code .

. . .
| |

36 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: NEP_HANDSHAKE_CLIENT message format9



• Server Nonce: 256 bits

� Nonce value received from the server in the previous NEP_HANDSHAKE_SERVER
message. This allows the server to ensure that the received reply is
fresh and was generated as a result of its NEP_HANDSHAKE_SERVER
message.

• Client Nonce: 256 bits

� Random number. This number must be generated using a crypto-
graphically secure PRNG and must not be reused. This is the data
that should be used by the server to construct its cipher block ini-
tialization vector.

• Partner IP address: 128 bits

� This is the server's IP address as seen by the client. This �eld has
128 bits to allow use of both IPv4 and IPv6 addresses. When IPv4 is
used, only the �rst four bytes are used. The rest may be set to zero
or �lled with random data.

• IP version: 8 bits

� Version of the address in the "Partner IP address" �eld. It should
take one of the following values:

∗ 0x04 : for IP version 4.

∗ 0x06 : for IP version 6.
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2.6 Message NEP_HANDSHAKE_FINAL

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version | Message Type | Total Length |

1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |

2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |

3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |

4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

5 +-- --+
| |

6 +-- --+
| |

7 +-- --+
| Client Nonce |

8 +-- --+
| |

9 +-- --+
| |

10 +-- --+
| |

11 +-- --+
| |

12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
###################### ENCRYPTION STARTS HERE #######################

12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

13 +-- --+
| |

14 +-- Partner IP address --+
| |

15 +-- --+
| |

16 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Version | |

17 +---------------+ --+
| |

18 +-- Reserved --+
| |

19 +-- --+
| |

20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
####################### ENCRYPTION ENDS HERE ########################

20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |

. . .

. . Message Authentication Code .

. . .
| |

28 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: NEP_HANDSHAKE_FINAL message format

• Client Nonce: 256 bits

� Nonce value received from the client in the preceding NEP_HANDSHAKE_CLIENT
message.
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• Partner IP address: 128 bits

� This is the clients's IP address as seen by the server. This �eld has
128 bits to allow use of both IPv4 and IPv6 addresses. When IPv4 is
used, only the �rst four bytes are used. The rest may be set to zero
or �lled with random data. The inclusion of this information lets the
client immediately detect the presence of some intermediate devices
that change his source IP (e.g a NAT box). This is a modi�cation
of the original X.509 three way authentication protocol, provided,
among other things, in order to make the man-in-the-middle attack
described in [1] more di�cult.

• IP version: 8 bits

� Version of the address in the "Partner IP address" �eld. It should
take one of the following values:

∗ 0x04 : for IP version 4.

∗ 0x06 : for IP version 6.

2.7 Operation NEP_PACKET_SPEC

The NEP_PACKET_SPEC message is sent by the client to tell the server what
kind of packets it should expect.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

###################### ENCRYPTION STARTS HERE #######################
0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version | Message Type | Total Length |
1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |
2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |
3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved |
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| IP version | Protocol | Packet Count |
5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. | |
. . .
. . PacketSpec .
n . .

| |
32 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

####################### ENCRYPTION ENDS HERE ########################
32 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |
. . .
. . Message Authentication Code .
. . .

| |
40 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5: NEP_PACKET_SPEC message format
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• IP version: 8 bits

� Speci�es which is the expected IP version. It must contain one of the
following values:

∗ 0x04 (IP version 4)

∗ 0x06 (IP version 6)

∗ 0xFF (Any version)

• Protocol: 8 bits.

� Speci�es which kind of packets will be sent to the server. It must
contain one of the following values:

∗ 0x06 (Protocol TCP) Tells the server to listen to TCP packets
coming from the client's IP address.

∗ 0x11 (Protocol UDP) Tells the server to listen to UDP packets
coming from the client's IP address.

∗ 0x01 (Protocol ICMP) Tells the server to listen to ICMP packets
coming from the client's IP address.

• Packet count: 16 bits.

� Speci�es how many packets will be sent. It must be in NETWORK
byte order.

• PacketSpec: 864 bits.

� Tells the server which header �elds should be checked to match a
captured packet with the client that sent it. This is neccessary as the
server supports multiple user sessions at a time, and needs a way to
distinguish the packets.

The PacketSpec �eld consists of a list of protocol �elds and their expected value.
Every item on that list has the following format: {FieldCode, F ield V alue},
where "Field Code" is an 8-bit numeric identi�er of the �eld (see de�nitions
below) and "Field Value" is the expected value, that the server should try to
match. The length of "Field Value" depends on the "Field Code" (see table
below for details) and, in general, it matches the usual length for that �eld int
its original protocol header.

Items on the PacketSpec list are speci�ed sequentially. However, the �nal
length of the list must be 108 bytes, so null bytes must be added after the last
item. The following table lists the available �eld speci�ers, their code and the
length of their values.

The PAYLOAD_MAGIC type lets the client specify some magic number
included in the packet's payload. This can be used when all other speci�ers fail
(e.g: in IPv4-to-IPv6 tunnels). The length of its �eld data is variable and must
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Name Code Length

IPv4_TOS 0xA0 8 bits
IPv4_ID 0xA1 16bits

IPv4_FRAGOFF 0xA2 16 bits
IPv4_PROTO 0xA3 8 bits
IPv6_TCLASS 0xB0 8 bits
IPv6_FLOW 0xB1 24 bits
IPv6_NHDR 0xB2 8 bits
TCP_SPORT 0xC0 16 bits
TCP_DPORT 0xC1 16 bits
TCP_SEQ 0xC2 32 bits
TCP_ACK 0xC3 32 bits
TCP_FLAGS 0xC4 8 bits
TCP_WIN 0xC5 16 bits
TCP_URP 0xC6 16 bits

ICMP_TYPE 0xD0 8 bits
ICMP_CODE 0xD1 8 bits
UDP_SPORT 0xE0 16 bits
UDP_DPORT 0xE1 16 bits
UDP_LEN 0xE2 16 bits

PAYLOAD_MAGIC 0xFF Variable

Table 2: Field Speci�ers
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be speci�ed right after the �eld code. Note that the length can never be higher
than the remaining space in the PacketSpec �eld. If no other �eld speci�ers are
set, "length" can never be higher than 106 bytes. Servers should carefully check
the structure of the PacketSpec �eld and close the session established with the
sender if it does not meet the requirements speci�ed in this document.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PAYLOAD_MAGIC | Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Value +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 6: Payload Magic option format

• PAYLOAD_MAGIC: 8 bits.

� Field code. MUST be set to 0xFF.

• Length: 8 bits

� Length of the data in the "Value" �eld. MUST be greater than zero;
MUST NOT be greater than the remaining space in the PacketSpec
�eld and MUST NEVER exceed 106 bytes.

• Value: variable length.

� Payload data. Its length must be the one speci�ed in the "Length"
�eld. It may contain any binary value. Comparisons at the server
side should be made at the bit level so the encoding should match
the one used at the application layer in the packets that are produced
and sent by the client.

Here is an example of how a typical speci�er list looks like:
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0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4_TOS | 0x00 | IPv4_ID | 0xCA |

1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xFE | IPv4_PROTO | 0x06 | TCP_SPORT |

2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x4432 | TCP_DPORT | 0x00 |

3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x50 | TCP_FLAGS | 0x08 | TCP_SEQ |

4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x5D33FA6D |

5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x00 | 0x00 | 0x00 | 0x00 |

6 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x00 | 0x00 | 0x00 | 0x00 |

27 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7: Example of a �eld speci�er list

All packet speci�cations MUST include the IPv4_ID speci�er (or IPv6_Flow
for IPv6) and at least three other �elds speci�ers. Additionally, clients MUST
NEVER specify the same �eld speci�er more than once in a NEP_PACKET_SPEC
message. Clients that send messages that do not meet these requirements MUST
be rejected by the server.

2.8 Operation NEP_READY

The READY packet is sent by the server to indicate the client that his SPECS
packet was accepted and that everything is ready to start receiving and echoing
packets.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

###################### ENCRYPTION STARTS HERE #######################
0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version | Message Type | Total Length |
1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |
2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |
3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved |
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

####################### ENCRYPTION ENDS HERE ########################
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |
. . .
. . Message Authentication Code .
. . .

| |
12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8: NEP_READY message format
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2.9 Operation NEP_ECHO

The NEP_ECHO message is sent by the server and it contains an echoed net-
work packet.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

###################### ENCRYPTION STARTS HERE #######################
0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version | Message Type | Total Length |
1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |
2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |
3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved |
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| DLT Type | Packet Length |
5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

. .
. . Packet .
. . .
. . +-+-+-+-+-+-+-+-+

| | Padding |
n +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

####################### ENCRYPTION ENDS HERE ########################
n +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |
. . .
. . Message Authentication Code .
. . .

| |
n+8 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9: NEP_ECHO message format

• DLT Type: 16 bits

� Speci�es the type of link layer device used in the server side. Since the
server includes link layer frames in echoed packets, the client needs
to know the DLT in order to process link layer header information.
Values used in this �eld must match DLT types de�ned in libpcap
and must be transmitted in NETWORK byte order. Servers may
use the special value 0x0000 to indicate that no link layer header is
included.

• Packet Length: 16 bits

� Speci�es the length of the echoed packet measured in bytes. The
value stored in this �eld must be in NETWORK byte order and
must never be greater than 9212, as that is the maximum number of
bytes that can be echoed per packet.

• Packet: variable length.
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� This corresponds to the packet being echoed. Servers should store
the packet exactly as it was received. No byte order conversions or
any other alteration should be performed. The whole NEP_ECHO
packet must have a length that is a multiple of 16 bytes, so if (packet_len+4)mod16
is not zero, the packet �eld must be padded with NULL bytes. As
noted before, the maximum length for an echoed packet is 9212 bytes.
Any packet that exceeds that length must be truncated.

2.10 Operation NEP_ERROR

The NEP_ERROR packet is sent by client or server when an error occurs, and
informs the other end that the sender is terminating the NEP session and clos-
ing the TCP connection. This message includes an error description string that
should explain the reason why the session is being terminated (e.g. authentica-
tion failed, invalid message format).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

###################### ENCRYPTION STARTS HERE #######################
0 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version | Message Type | Total Length |
1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |
2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |
3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved |
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

. .
. . Error Message .
. . .
. . .

| |
24 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

####################### ENCRYPTION ENDS HERE ########################
24 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |
. . .
. . Message Authentication Code .
. . .

| |
32 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 10: NEP_ERROR message format

• Error Message: 640 bits

� Contains a NULL-terminated ASCII string that describes the reason
why the session is being terminated by the sender. The string MUST
contain a NULL character (0x00) at the end of it. The remaining
bytes, if any, must also be set to zero.
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2.11 Flow diagrams

The following diagram shows a typical client/server session:

+------+ +------+
|CLIENT| |SERVER|
+------+ +------+

| |
| NEP_HANDSHAKE_SERVER |
|<<---------------------|
| |
| |
| NEP_HANDSHAKE_CLIENT |
|--------------------->>|
| |
| |
| NEP_HANDSHAKE_FINAL |
|<<---------------------|
| |
| |
| |
| NEP_PACKET_SPEC |
|--------------------->>|
| |
| |
| |
| NEP_READY |
|<<---------------------|
| |
| |
| |
| |
| NEP_ECHO |
|<<---------------------|
| |
| NEP_ECHO |
|<<---------------------|
| |
| NEP_ECHO |
|<<---------------------|
| . |
| . |
| . |
| NEP_ECHO |
|<<---------------------|
| |
| |
| |
| TCP Connection Close |
|<<------------------->>|

Figure 11: Flow for a typical interaction.

The following diagram represents a session where the client sends an invalid
PacketSpec message.

19



+------+ +------+
|CLIENT| |SERVER|
+------+ +------+

| |
| NEP_HANDSHAKE_SERVER |
|<<---------------------|
| |
| |
| NEP_HANDSHAKE_CLIENT |
|--------------------->>|
| |
| |
| NEP_HANDSHAKE_FINAL |
|<<---------------------|
| |
| |
| |
| NEP_PACKET_SPEC |
|--------------------->>|
| |
| |
| NEP_ERROR |
|<<---------------------|
| |
| TCP Connection Close |
|<<------------------->>|

Figure 12: Flow for an invalid packet speci�cation

The following diagram represents a session where the server fails to provide
a valid NEP_HANDSHAKE_SERVER message.

+------+ +------+
|CLIENT| |SERVER|
+------+ +------+

| |
| NEP_HANDSHAKE_SERVER |
|<<---------------------|
| |
| |
| TCP Connection Close |
|<<------------------->>|

Figure 13: Flow for an invalidid NEP_HANDSHAKE_SERVER

The following diagram represents a session where the client fails to provide
a valid NEP_HANDSHAKE_CLIENT message.
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+------+ +------+
|CLIENT| |SERVER|
+------+ +------+

| |
| NEP_HANDSHAKE_SERVER |
|<<---------------------|
| |
| |
| NEP_HANDSHAKE_CLIENT |
|--------------------->>|
| |
| |
| TCP Connection Close |
|<<------------------->>|

Figure 14: Flow for an invalid NEP_HANDSHAKE_CLIENT

2.12 Security

The NEP client/server authentication process is based on the three-way au-
thentication protocol, described in CITT recommendation X.509 [2]. However,
it has been slightly modi�ed:

• Messages are not signed using public-key cryptography but a symmetric
encryption key known by both client and server. This provides the same
authentication as the original speci�cation but it does not provide non-
repudiation.

• Ciphertext is encrypted using the secret key shared by client and server,
instead of using the receiver's public key.

• The cipher suite to be used for data encryption is AES-128.

When one of the two participating entities receives a fully encrypted message
(any message other than NEP_HANDSHAKE_SERVER, NEP_HANDSHAKE_CLIENT
or NEP_HANDSHAKE_FINAL), it performs the following steps:

1. Reads 128 bits and decrypts them.

2. Checks that version equals 0x01.

3. Checks that the value in the message type �eld corresponds to a valid
message type code.

4. If message type is not one of NEP_HANDSHAKE_CLIENT or NEP_HANDSHAKE_SERVER,
it checks that the received sequence number matches the last received se-
quence number from the same sender plus one.

5. It checks that the received timestamp is inside a "reasonable" time window
(where "reasonable" is left unde�ned on purpose, as it may vary depending
on the nature of the implementation or the host system)
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6. 6. Checks the received total length. For messages whose length is �xed, it
should check whether the received length matches the expected length of
the message. For variable length messages, it should check that the length
is at least, higher than or equal to the minimum length for that kind of
message.

7. If all tests succeed, then the remaining bits are read (remaining = Total-
Length - 128bits).

8. Any remaining ciphertext is decrypted.

9. An alternative message authentication code is computed over the unen-
crypted data and matched against the received one. If both codes match,
then the message is considered valid (its integrity has been veri�ed and
its contents are to be trusted), authentic (the creator of the message is
someone who knows the secret) and fresh (the message is new and has not
been replayed).

2.13 Cryptographic key derivation.

Five cryptographic keys are generated for each client session. All of them are
derived from a single shared secret (a passphrase), known by client and server.
The key derivation process is the following:

function deriveKey(passphrase , NONCES , KEY_TYPE_ID ){

h=SHA256(passphrase + NONCES + KEY_TYPE_ID)

do (1000 times){

h=SHA256(h);

}

return h;

}

Figure 15: Pseudo-code of the key derivation algorithm

Where 'h' is a 256bit bu�er that holds the �nal key, 'SHA256' is the hash
computation function for the SHA-256 algorithm, 'NONCES' is the combina-
tion of server's and client's nonce values, exchanged during handshake, and
KEY_TYPE_ID is a string that varies depending on the type of key being
derived. (See below for its de�nitions).

As mentioned above, a total of 5 symmetric keys are used. Those keys are:

• NEP_KEY_MAC_S2C: 256 bits

� Key used by the server to sign its messages. For this type of key,
KEY_TYPE_ID="NEPkeyforMACServer2Client" (unquoted) and
NONCES equals the server nonce in the NEP_HANDSHAKE_SERVER
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message, concatenated with the client nonce in the NEP_HANDSHAKE_CLIENT
message (SERVER_NONCE + CLIENT_NONCE).

• NEP_KEY_MAC_S2C_INITIAL: 256 bits

� Key used by the server to sign its NEP_HANDSHAKE_SERVER
messages. This is a special case key because it needs to be generated
before a client nonce is received (this is the only key that is not in�u-
enced by the client's nonce). For this type of key, KEY_TYPE_ID="NEPkeyforMACServer2ClientInitial"
(unquoted) and NONCES equals the nonce in the NEP_HANDSHAKE_SERVER
message, concatenated with an empty client nonce, in other words,
a nonce with all its bits set to zero (SERVER_NONCE + ZE-
ROED_NONCE).

• NEP_KEY_MAC_C2S: 256 bits

� Key used by the client to sign its messages. For this type of key,
KEY_TYPE_ID="NEPkeyforMACClient2Server" (unquoted) and
NONCES equals the server nonce in the NEP_HANDSHAKE_SERVER
message, concatenated with the client nonce in the NEP_HANDSHAKE_CLIENT
message (SERVER_NONCE + CLIENT_NONCE).

• NEP_KEY_CIPHERTEXT_C2S: 128 bits

� Key used by the client to encrypt its messages. For this type of
key, KEY_TYPE_ID= "NEPkeyforCiphertextClient2Server" (un-
quoted) and NONCES equals the server nonce in the NEP_HANDSHAKE_SERVER
message, concatenated with the client nonce in the NEP_HANDSHAKE_CLIENT
message (SERVER_NONCE + CLIENT_NONCE).

• NEP_KEY_CIPHERTEXT_S2C: 128 bits

� Key used by the server to encrypt its messages. For this type of
key, KEY_TYPE_ID= "NEPkeyforCiphertextServer2Client" (un-
quoted) and NONCES equals the server nonce in the NEP_HANDSHAKE_SERVER
message, concatenated with the client nonce in the NEP_HANDSHAKE_CLIENT
message (SERVER_NONCE + CLIENT_NONCE).

When not all 256 bits are required, the last 256-N bits of key material
may be discarded, where N is the desired key length. This is, if less than
256 of key material is needed, discarded bits must be the least signi�cant
ones.

2.14 Encryption process.

Encryption must be performed using AES-128-CBC. This is, using the AES
encryption algorithm in CBC mode, with 128-bit keys.For each party produc-
ing encrypted data, the �rst initialization vector should be the nonce that this

23



same party generated during the authentication handshake phase. If the nonce
has more bits than needed, only the neccessary number of bits should be used.
These bits should be the most signi�cant ones.

The initialization vector for subsequent encryption operations should be the
last ciphertext block produced by the same entitiy. This is, to encrypt the Nth
message, the last ciphertext block of the (N-1)th message should be used as the
initialization vector for message N. Same rule applies for decryption operations,
where the initialization vector should be the last ciphertext block received from
the other end.

2.15 Additional considerations.

• By default, the server side will listen for incoming connections on TCP
port 9929.

3 GLOSSARY
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1 Nping Echo Mode

The "Echo Mode" is a novel technique implemented by Nping which lets users
see how network packets change in transit, from the host where they originated
to the target machine. Basically, the Echo mode turns Nping into two di�erent
pieces: the Echo server and the Echo client. The Echo server is a network ser-
vice that has the ability to capture packets from the network and send a copy
("echo them") to the originating client through a side TCP channel. The Echo
client is the part that generates such network packets, transmits them to the
server, and receives their echoed version through a side TCP channel that it has
previously established with the Echo server.

This scheme lets the client see the di�erences between the packets that it
sends and what is actually received by the server. By having the server send
back copies of the received packets through the side channel, things like NAT de-
vices become immediately apparent to the client because it notices the changes
in the source IP address (and maybe even source port). Other devices like those
that perform tra�c shaping, changing TCP window sizes or adding TCP op-
tions transparently between hosts, turn up too.

The Echo mode is also useful for troubleshooting routing and �rewall issues.
Among other things, it can be used to determine if the tra�c generated by the
Nping client is being dropped in transit and never gets to its destination or if
the responses are the ones that don't get back to it.

Internally, client and server communicate over an encrypted and authenti-
cated channel, using the Nping Echo Protocol (NEP), whose technical speci�-
cation can be found in http://nmap.org/svn/nping/docs/EchoProtoRFC.txt

The following paragraphs describe the di�erent options available in Nping's
Echo mode.

• �ec <passphrase>, �echo-client <passphrase> (Run Echo client)

� This option tells Nping to run as an Echo client. <passphrase> is
a sequence of ASCII characters that is used used to generate the
cryptographic keys needed for encryption and authentication in a
given session. The passphrase should be a secret that is also known
by the server, and it may contain any number of printable ASCII
characters. Passphrases that contain whitespace or special characters
must be enclosed in double quotes.

� When running Nping as an Echo client, most options from the regular
raw probe modes apply. The client may be con�gured to send speci�c
probes using �ags like �tcp, �icmp or �udp. Protocol header �elds
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may be manipulated normally using the appropriate options (e.g. �
ttl, �seq, �icmp-type, etc.). The only exceptions are ARP-related
�ags, which are not supported in Echo mode, as protocols like ARP
are closely related to the data link layer and its probes can't pass
through di�erent network segments.

• �es <passphrase>, �echo-server <passphrase> (Run Echo server)

� This option tells Nping to run as an Echo server. <passphrase> is
a sequence of ASCII characters that is used used to generate the
cryptographic keys needed for encryption and authentication in a
given session. The passphrase should be a secret that is also known
by the clients, and it may contain any number of printable ASCII
characters. Passphrases that contain whitespace or special characters
must be enclosed in double quotes. Note that although it is not
recommended, it is possible to use empty passphrases, supplying �
echo-server "". However, if what you want is to set up an open Echo
server, it is better to use option �no-crypto. See below for details.

• �ep <port>, �echo-port <port> (Set Echo TCP port number)

� This option asks Nping to use the speci�ed TCP port number for
the Echo side channel connection. If this option is used with �echo-
server, it speci�es the port on which the server listens for connections.
If it is used with �echo-client, it speci�es the port to connect to on
the remote host. By default, port number 9929 is used.

• �nc, �no-crypto (Disable encryption and authentication)

� This option asks Nping not to use any cryptographic operations dur-
ing an Echo session. In practical terms, this means that the Echo side
channel session data will be transmitted in the clear, and no authen-
tication will be performed by the server or client during the session
establishment phase. When �no-crypto is used, the passphrase sup-
plied with �echo-server or �echo-client is ignored.

� This option must be speci�ed if Nping was compiled without openSSL
support. Note that, for technical reasons, a passphrase still needs to
be supplied after the �echo-client or �echo-server �ags, even though
it will be ignored.

� The �no-crypto �ag might be useful when setting up a public Echo
server, because it allows users to connect to the Echo server with-
out the need for any passphrase or shared secret. However, it is
strongly recommended to not use �no-crypto unless absolutely neces-
sary. Public Echo servers should be con�gured to use the passphrase
"public" or the empty passphrase (�echo-server "") as the use of cryp-
tography does not only provide con�dentiality and authentication but
also message integrity.
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• �once (Serve one client and quit)

� This option asks the Echo server to quit after serving one client. This
is useful when only a single Echo session wants to be established as it
eliminates the need to access the remote host to shutdown the server.

The following examples illustrate how Nping's Echo mode can be used to dis-
cover intermediate devices.

# nping --echo -client "public" echo.nmap.org --udp
Starting Nping ( http :// nmap.org/nping )
SENT (1.0970s) UDP 10.1.20.128:53 > 178.79.165.17:40125 ttl=64 id =32523 iplen =28
CAPT (1.1270s) UDP 80.38.10.21:45657 > 178.79.165.17:40125 ttl=54 id =32523 iplen =28
RCVD (1.1570s) ICMP 178.79.165.17 > 10.1.20.128 Port unreachable (type =3/ code =3) ttl=49 id =16619 iplen =56
[...]
SENT (5.1020s) UDP 10.1.20.128:53 > 178.79.165.17:40125 ttl=64 id =32523 iplen =28
CAPT (5.1335s) UDP 80.38.10.21:45657 > 178.79.165.17:40125 ttl=54 id =32523 iplen =28
RCVD (5.1600s) ICMP 178.79.165.17 > 10.1.20.128 Port unreachable (type =3/ code =3) ttl=49 id =16623 iplen =56

Max rtt: 60.628 ms | Min rtt: 58.378 ms | Avg rtt: 59.389 ms
Raw packets sent: 5 (140B) | Rcvd: 5 (280B) | Lost: 0 (0.00%)| Echoed: 5 (140B)
Tx time: 4.00459s | Tx bytes/s: 34.96 | Tx pkts/s: 1.25
Rx time: 5.00629s | Rx bytes/s: 55.93 | Rx pkts/s: 1.00
Nping done: 1 IP address pinged in 6.18 seconds

Figure 1: General Message Format

The output clearly shows the presence of a NAT device in the client's local
network. Note how the captured packet (CAPT) di�ers from the SENT packet:
the source address for the original packets is in the reserved 10.0.0.0/8 range,
while the address seen by the server is 80.38.10.21, the Internet side address of
the NAT device. The source port was also modi�ed by the device. The line
starting with RCVD corresponds to the responses generated by the TCP/IP
stack of the machine where the Echo server is run.

# nping --echo -client "public" echo.nmap.org --tcp -p80
Starting Nping ( http :// nmap.org/nping )
SENT (1.2160s) TCP 10.0.1.77:41659 > 178.79.165.17:80 S ttl=64 id=3317 iplen =40 seq =567704200 win =1480
RCVD (1.2180s) TCP 178.79.165.17:80 > 10.0.1.77:41659 SA ttl =128 id =13177 iplen =44 seq =3647106954 win =16384 <mss 1460>
SENT (2.2150s) TCP 10.0.1.77:41659 > 178.79.165.17:80 S ttl=64 id=3317 iplen =40 seq =567704200 win =1480
SENT (3.2180s) TCP 10.0.1.77:41659 > 178.79.165.17:80 S ttl=64 id=3317 iplen =40 seq =567704200 win =1480
SENT (4.2190s) TCP 10.0.1.77:41659 > 178.79.165.17:80 S ttl=64 id=3317 iplen =40 seq =567704200 win =1480
SENT (5.2200s) TCP 10.0.1.77:41659 > 178.79.165.17:80 S ttl=64 id=3317 iplen =40 seq =567704200 win =1480

Max rtt: 2.062ms | Min rtt: 2.062ms | Avg rtt: 2.062ms
Raw packets sent: 5 (200B) | Rcvd: 1 (46B) | Lost: 4 (80.00%)| Echoed: 0 (0B)
Tx time: 4.00504s | Tx bytes/s: 49.94 | Tx pkts/s: 1.25
Rx time: 5.00618s | Rx bytes/s: 9.19 | Rx pkts/s: 0.20
Nping done: 1 IP address pinged in 6.39 seconds

Figure 2: General Message Format
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In this example, the output is a bit more tricky. The absence of error mes-
sages shows that the Echo client has successfully established an Echo session
with the server. However, no CAPT packets can be seen in the output. This
means that none of the transmitted packets reached the server. Interestingly, a
TCP SYN-ACK packet was received in response to the �rst TCP-SYN packet
(and also, it is known that the target host does not have port 80 open). This
behavior reveals the presence of a transparent web proxy cache server (which in
this case is an old MS ISA server).
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