
Universidad Politécnica de Madrid
Escuela Técnica Superior de Ingenieros de Telecomunicación

AUTOMATIC GRADING OF PROGRAMMING

ASSIGNMENTS: PROPOSAL AND VALIDATION OF

AN ARCHITECTURE

TRABAJO FIN DE MÁSTER

Julio César Caiza Ñacato

2013

Universidad Politécnica de Madrid
Escuela Técnica Superior de Ingenieros de Telecomunicación

Máster Universitario en
Ingeniería de Redes y Servicios Telemáticos

TRABAJO FIN DE MÁSTER

AUTOMATIC GRADING OF PROGRAMMING

ASSIGNMENTS: PROPOSAL AND VALIDATION OF

AN ARCHITECTURE

Autor
Julio César Caiza Ñacato

Director
José María Del Álamo Ramiro

Departamento de Ingeniería de Sistemas Telemáticos

2013

A mi familia, de manera especial a mi hermana Pamela

Agradecimientos

Al Gobierno Ecuatoriano, que a través de la Secretaría Nacional de Educación

Superior, Ciencia, Tecnología e Innovación y su programa de becas Convocatoria

Abierta 2011, me dio la oportunidad de poder realizar y culminar estos estudios.

A José María del Álamo por haber dirigido el presente trabajo. Sus ideas y

recomendaciones me han servido de mucho durante la realización del mismo. De igual

modo me ha ayudado a iniciar en el mundo de la investigación.

A mis amigas y amigos de siempre, aquellos que a pesar de la distancia y el tiempo,

siempre están ahí, augurándome buenas cosas y esperando el tiempo de volver a

vernos.

A mis nuevas amigas y amigos que he conocido gracias a vivir en esta Madrid

cosmopolita. Porque me han brindado su sincera amistad y han hecho que toda esta

experiencia valga aún más la pena. Seguro se añadirán a los amigos de siempre.

Finalmente, pero muy importante a mi familia, que son los que siempre me apoyan

y me animan a seguir adelante.

i

Resumen

La calificación automática de tareas de programación es un tema importante dentro

del campo de la innovación educativa que se enfoca en mejorar las habilidades de

programación de los estudiantes y en optimizar el tiempo que el profesorado dedica a

ello. La Universidad Politécnica de Madrid está interesada en este campo de

investigación y dentro del proyecto “Sistema de Evaluación Automática de Prácticas

de Programación” espera construir una herramienta para soportar dicha calificación

automática. Así mismo, muchas instituciones académicas han reportado trabajos

similares incluyendo detalles de la implementación y despliegue de las mismas; pero a

pesar de tal cantidad de trabajos, aún quedan problemas por resolver. Uno de ellos y

muy importante está relacionado con la diversidad de criterios para calificar las tareas

de programación.

El presente trabajo tiene como objetivo el proponer y validar una arquitectura para

soportar procesos de calificación automáticos de tareas de programación. La

mencionada arquitectura provee de modularidad, extensibilidad y flexibilidad al

proceso de calificación, que se traducen en la capacidad de soportar múltiples modos

de calificación.

Para ello, en primer lugar se ha llevado a cabo una revisión sistemática de la

literatura para proveer de un contexto al problema mencionado. Esta revisión

contribuye con la identificación y construcción de una caracterización de criterios de

calificación de tareas de programación, los cuales fueron reportados en trabajos

similares. La descripción de las herramientas construidas en dichos trabajos ayuda a

identificar una de ellas que pueda servir como base, para seguir con la implementación

de nuevas características, y de este modo evitar el “reinventar la rueda”. El plugin de

Moodle, Virtual Programming Lab ha sido seleccionada como herramienta base.

Además, la información recolectada en esta revisión ha servido para completar un

conjunto amplio de requisitos para empezar con un proceso de desarrollo de software.

Se presenta entonces la definición, implementación y validación de la arquitectura

siguiendo un modelo de desarrollo en cascada. Como primer paso, se realiza la

definición de un nuevo artefacto de software nombrado como grading-submodule que

permite evaluar código fuente considerando una métrica o un criterio de calificación

determinado e independientemente del lenguaje de programación de dicho código

fuente. A continuación se realiza: la identificación de un conjunto de requerimientos

incluyendo aquellos funcionales y no funcionales, el análisis de la solución a

desarrollar considerando la herramienta base, el diseño de la arquitectura y sus

ii

elementos, la implementación haciendo énfasis en consideraciones importantes acorde

a las tecnologías utilizadas, y se termina con una validación a través de dos casos de

estudio.

La arquitectura está basada en el uso de un orquestador que controla todo el

proceso de calificación, teniendo en cuenta la información provista por un archivo de

configuración. El proceso de calificación está definido por un conjunto de grading-

submodules que pueden estar dispuestos de cualquier modo. Garantizando entonces la

modularidad, extensibilidad y flexibilidad dentro del proceso de calificación

La validación se realiza en dos partes: la primera demuestra que la arquitectura

puede ser llevada a la práctica, es decir puede ser implementada, para esto se han

usado librerías Java importantes; la segunda parte de la validación se realiza a través

de dos casos de estudio que se basan en tareas de programación reales dadas a los

estudiantes en la Escuela Técnica Superior de Ingenieros de Telecomunicación en la

Universidad Politécnica de Madrid.

iii

Abstract

Automatic grading of programming assignments is an important topic in academic

research. It aims at improving students’ programming skills and optimizing the

teaching staff time. Universidad Politécnica de Madrid is interested in this research

field and is currently working on the project “Sistema de Evaluación Automática de

Prácticas de Programación”, which aims to build a tool to support this kind of grading.

Several academic institutions have been interested in this research field as well. They

have reported their works, which include the implementation and deployment of this

kind of tools. But, in spite of the big quantity of work carried out in this field, there are

still problems to be solved. One important gap is related to the diversity of criteria to

grade programming assignments.

As a mean to solve the mentioned gap, this work aims to propose and validate an

architecture to support the grading process of programming assignments. This

architecture will provide modularity, extensibility, and flexibility features to that

process. It implies the capability of supporting several different ways of grading

assignments.

This work starts making a systematic literature review to get the context of the

problem. This part of the work contributes to identify and characterize the grading

criteria used in related works. Additionally, a description of already built tools is

provided, which is helpful to choose a base tool and to continue working on it in order

to avoid “reinventing the wheel”. Virtual Programming Lab was selected as this base

tool. Helpful information to complete a set of requirements, which allows starting a

software development process, is provided as well.

Based on a waterfall development process, this work presents the design,

implementation and validation of the mentioned architecture. This part of the work

starts defining a new software artifact named grading-submodule, which allows

evaluating source code considering a grading criterion or a grading metric

independently of the programming language. After that, this work goes on with the

identification of a set of functional and non functional requirements, the analysis of the

solution considering VPL Moodle’s plugin as base, the design of the architecture and

the elements inside it, the implementation making important considerations to choose

the most suitable technology, and a validation through two case studies.

The architecture is based on an orchestrator, which controls the whole grading

process considering the information provided by a configuration file. The grading

iv

process can include a set of grading-submodules arranged in different ways. This

features guarantee modularity, extensibility and flexibility in the grading process.

The validation is carried out in two steps: the first one is through the architecture’s

workability, which was carried out using powerful Java libraries; and the second one is

through two case studies based on real programming assignments proposed to

students at Escuela Técnica Superior de Ingenieros de Telecomunicación at

Universidad Politécnica de Madrid.

v

Contents

Resumen .. i

Abstract ... iii

Contents ... v

List of figures .. ix

List of tables .. xi

Acronyms ... xii

1 Introduction ... 1

1.1 Justification ... 1

1.2 Goals .. 3

1.2.1 General .. 3

1.2.2 Specific .. 3

1.3 Structure of the document .. 4

2 State of the art .. 5

2.1 Automatic grading of programming assignments .. 5

2.1.1 Contrasting previous reviews .. 6

2.1.2 Analyzed key features ... 8

2.1.3 Tools .. 9

2.1.4 Current situation analysis ... 13

2.2 Grading criteria .. 16

2.2.1 Grading criteria characterization ... 16

2.2.2 Technologies to evaluate criteria ... 18

2.3 Technologies for orchestration ... 20

2.4 Virtual Programming Lab .. 22

2.4.1 Main features .. 22

2.4.2 Architecture .. 23

vi

2.4.3 Technologies ... 24

2.4.4 The grading process .. 27

2.4.5 VPL’s suitability ... 29

2.5 Learning management systems ... 29

2.5.1 Paid-for ... 30

2.5.2 Free and open source .. 30

2.5.3 Moodle .. 32

2.6 Chapter summary .. 33

3 Problem analysis .. 35

3.1 Actors .. 35

3.2 Defining the context .. 36

3.3 Requirements ... 38

3.3.1 Functional requirements ... 38

3.3.2 Non functional requirements ... 40

3.4 Solution approach .. 40

3.5 Existent tools’ suitability ... 42

3.6 Defining the scope ... 46

3.7 The solution for the defined scope .. 47

3.7.1 Analysis of the VPL-Moodle subsystem ... 48

3.7.2 Analysis of VPL-Jail subsystem ... 48

3.8 Chapter summary .. 50

4 Design ... 51

4.1 VPL-Jail subsystem .. 51

4.1.1 Detailed architecture ... 51

4.1.2 Process perspective .. 54

4.1.3 Control perspective ... 56

4.1.4 Objects-oriented design .. 57

4.2 VPL-Moodle subsystem .. 66

4.2.1 Data Model ... 66

4.2.2 An abstract view of the grading process management module 69

4.2.3 User interfaces .. 71

vii

4.3 Subsystems communication ... 73

4.3.1 Grading-submodules management ... 73

4.3.2 Students’ submission ... 74

4.4 Chapter summary .. 74

5 Implementation and Validation .. 75

5.1 VPL-Jail subsystem implementation ... 75

5.1.1 Programming languages ... 75

5.1.2 Configuration file ... 76

5.1.3 Logging ... 78

5.1.4 Application’s core .. 79

5.1.5 Application’s submodules .. 81

5.1.6 VPL’s integration ... 83

5.1.7 The lib directory ... 83

5.2 VPL-Moodle subsystem implementation ... 83

5.2.1 Programming languages ... 84

5.2.2 Configuration file ... 84

5.2.3 Lib file ... 85

5.2.4 User interfaces .. 85

5.2.5 VPL’s integration ... 86

5.3 Subsystems communication ... 87

5.3.1 Code reusability ... 87

5.3.2 VPL-Moodle subsystem .. 87

5.3.3 VPL-Jail subsystem .. 88

5.4 Validation ... 88

5.4.1 Case study 1 ... 88

5.4.2 Case study 2 ... 99

5.4.3 Analysis... 103

5.5 Chapter summary .. 104

6 Conclusions .. 106

6.1 Goals achievement ... 106

6.2 Main Contributions ... 108

viii

6.3 Future Work ... 109

Bibliography ... 111

Annex I: Scientific article about the systematic literature review 114

Annex II: Description of important methods in the classes Orchestrator,

CommandExecutor and GradingSumoduleProgram .. 125

Annex III: Detailed description of the case studies (in Spanish) 131

ix

List of figures

Figure 1.VPL’s architecture .. 23

Figure 2. XML–RPC request. ... 26

Figure 3. XML–RPC response. .. 26

Figure 4. Automatic grading process .. 28

Figure 5. High-level use case diagram .. 37

Figure 6. Solution approach ... 41

Figure 7. VPL-Moodle and VPL-Jail subsystems .. 47

Figure 8. Grading process inside the VPL–Jail subsystem .. 49

Figure 9. Default architecture for grading in VPL .. 52

Figure 10. Architecture considering many metrics to grade in VPL .. 52

Figure 11. Proposed architecture for grading process ... 53

Figure 12. Elements and calls inside the grading process .. 55

Figure 13. Grading process inside the VPL-Jail subsystem ... 56

Figure 14. Controllers in the VPL-Jail subsystem ... 57

Figure 15. Class diagram for orchestrator and grading-submodules .. 60

Figure 16. Extended class diagram with GradingSubmoduleProgram subclases 63

Figure 17. Package diagram of the orchestrator and grading-submodules levels 64

Figure 18. Grading process interactions ... 65

Figure 19. Data directories inside the VPL-Moodle subsystem .. 67

Figure 20. Semantic data model for the grading module .. 68

Figure 21. Architecture for the grading process management .. 70

Figure 22. View of grading-submodules management .. 71

Figure 23. View of grading-submodules creation / addition ... 72

Figure 24. General view of grading process .. 72

Figure 25. View for configuration of grading-submodules .. 72

Figure 26. Communication between subsystems in the grading-submodules management 73

Figure 27. Structure of the XML configuration file .. 76

Figure 28. XML configuration file for the logger in the grading module ... 78

Figure 29. Piece of annotated code to map the XML configuration file ... 80

Figure 30. Structure for the run() method .. 82

Figure 31. Adding a new grading-submodule for testing Java programs .. 91

Figure 32. Grading-submodules management user interface .. 92

Figure 33. VPL activity selection... 93

Figure 34. VPL activity (programming assignment) creation ... 93

Figure 35. Settings’ management for a VPL activity .. 94

Figure 36. Execution options for a VPL activity ... 94

Figure 37. Requested files for a VPL activity ... 95

Figure 38. Grading process web form ... 95

Figure 39. Definition of grading-submodules inside the grading process ... 96

x

Figure 40. Definition of grading-submodules inside the grading process ... 97

Figure 41. Configuration of grading-submodules’ parameters inside the grading process 97

Figure 42. Grading process already configured ... 98

Figure 43. Student interface – assignment description ... 98

Figure 44. Student interface – uploading the requested file ... 99

Figure 45. Student interface – feedback provided .. 99

Figure 46. Grading-submodules management considering the StyleGradingSubmodule 101

Figure 47. Parameters for StyleGradingSubmodule .. 102

Figure 48. Grading process considering a StyleGradingSubmodule ... 102

Figure 49. Student interface – feedback considering code style .. 103

xi

List of tables

Table 1. Mature tools .. 14

Table 2. Recently developed tools ... 15

Table 3. Grading criteria characterization .. 17

Table 4. Tools for evaluating programs .. 19

Table 5. Functional requirements .. 39

Table 6. Non functional requirements ... 40

Table 7. Automatic grading tools suitability ... 43

Table 8. VPL’s fulfillment of all requirements ... 44

Table 9. Requirements considered for this work .. 46

xii

Acronyms

API Application Programming Interface

bLTI Basic Learning Tools Interoperability

CPU Central Processing Unit

CRUD Create – Read – Update - Delete

CSS Cascading Style Sheets

DB Database

DBMS Database Management System

DoS Denial of Service

DSL Domain Specific Language

EHEA European Higher Education Area

ETSIT Escuela Técnica Superior de Ingenieros de Telecomunicación

FOSS Free and Open Source Systems

FR Functional Requirement

GNU GNU's Not Unix

GPL GNU General Public License

GUI Graphical User Interface

HDL Hardware Description Language

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technologies

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standarization

J2EE Java Enterprise Edition

JAWS Java Web Start

JAXB Java Architecture for XML Binding

JAX-RS Java API for Restful Web Services

JSF Java Server Faces

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

LMS Learning Management Systems

LRN Learn Research Network

MOODLE Modular Object Oriented Dynamic Learning Environment

NATO North Atlantic Treaty Organization

NFR Non Functional Requirement

Oauth Open Authentication Protocol

xiii

OSGi Open Services Gateway Initiative

PHP HyPertext Preprocessor

POM Project Object Model

RADIUS Remote Authentication Dial In User Service

RMI Remote Method Invocation

RPC Remote Procedure Calls

RSS Rich Site Summary

SCORM Sharable Content Object Reference Model

SEAPP Sistema de Evaluación Automática de Prácticas de Programación

SOAP Simple Object Access Protocol

SQL Structured Query Language

SVG Scalable Vector Graphics

TCP Transport Control Protocol

UC Use Case

UDP User datagram Protocol

UML Unified Modeling Language

UNESCO United Nations Educational, Scientific and Cultural Organization

UPM Universidad Politécnica de Madrid

URI Uniform Resource Identifier

UTF8 UCS Transformation Format -8bit

VHDL VHSIC Hardware Description Language

VPL Virtual Programming Lab

W3C World Wide Web Consortium

WAI Web Accessibility Initiative

WCAG Web Content Accessibility Guidelines

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

1

1 Introduction

1.1 Justification

One of the priorities in the EHEA (European Higher Education Area) is encouraging

the lifelong learning. This is a program that aims the inclusion of “people at all stages

of their lives”1 to contribute to develop education and training. ICT (Information and

Communications Technologies) is considered as one of the four key points to support

the program. They provide of help to make innovative practices, improve access to

education and develop advanced management systems2.

Additionally, the EHEA implementation brought a change in the typical teaching –

learning process. It means, changing from an environment focused in just teaching to a

new one, where there is a tutor guiding the student’s learning (Méndez 2008)

(Martínez 2011).

To do a good job as a tutor, it is necessary to trace the students’ improvement. This

is quite difficult considering the diversity and big quantity of students. ICT can be used

to help teachers. The main advantages of this kind of tools include availability, distance

suppression (maintaining student-teacher contact) (Méndez 2008), possibility to work

with a lot of students, and so on.

There is a good set of ICTs to help in education. They include technologies that are

oriented to a general scope and can be used in any education field, LMSs (Learning

Management Systems) for instance. They are broadly used around the world. In Spain

most universities use this kind of tools (García González et al. 2010). In the specific case

of UPM (Universidad Politécnica de Madrid), Moodle3 (Modular Object Oriented

Dynamic Learning Environment) is used to get support on many tasks for different

courses.

ICTs can be used more specifically as well. They can be oriented to do specific tasks

in a given course. Programming courses can use this kind of technologies to improve

the student’s learning and to increase their skills. For example a tool of this kind could

provide an automatic grading of the students’ assignments. This tool would help

students to receive their grades and good feedback quickly and it would be helpful for

them to improve their programming abilities. For teaching staff, it would be useful to

1 http://ec.europa.eu/education/lifelong-learning-programme/index_en.htm
2 http://ec.europa.eu/education/lifelong-learning-programme/ict_en.htm
3 http://moodle.org/

2

avoid the excessive and maybe repetitive workload. The saved time could be used in

more focused task in the same programming learning process.

Considering aforementioned context, the UPM inside the program “Ayudas a la

Innovación Educativa y a la Mejora de la Calidad de la Enseñanza” carries out the

project SEAPP (Sistema de Evaluación Automática de Prácticas de Programación). This

project aims to implement a tool for automatic grading of programming assignments to

help students in their learning process and to support teachers in tutoring and tracing

students’ improvement4.

Likewise to this case, other institutions reported similar requirements. Several

researches have informed about the development of this kind of software tools and

their correspondent implementations and deployments. The fundamental goals

included providing a good feedback and optimizing the teaching staff time.

Additionally, these projects informed about additional gaps. These were related to

plagiarism detection, provision of a secure test environment, controlled resources’ use,

the diversity of ways for grading (Higgins et al. 2005), the definition of pedagogical

models (Choy et al. 2008), and so on. These reports have been studied in some reviews,

which can help to get a current perspective of this research field.

Douce et al. in (Douce et al. 2005) reported as the main improvements in the

reviewed tools, the orientation of using web-based technologies for resources’ access

and the increment in support for more programming languages. They proposed as

future work the grading of GUI (Graphical User Interface) programs, meta-testing (test

of tests), LMS integration, means to protect the system against intentional or

unintentional malicious code, and support for web programming.

A few years later Ihantola et al. in (Ihantola et al. 2010) and Romli et al. in (Romli et

al. 2010) reported improvements in systems integration with LMSs, in security for the

host system, and the use of static and dynamic analysis inside the grading process.

Additionally, they reported the lack of a broad tool’s adoption (due to every tool had

been built considering specific requirements), and the lack of a common grading

model. In the first case they made a set of suggestions which include working on open

source projects. Some projects followed this suggestion and their acceptance have

grown (Edwards et al. 2008) (Rodríguez-del-Pino et al. 2012). In (Romli et al. 2010) the

building of a flexible and configurable system was proposed, which seemed a good

path to reach broad adoption. In the second case, the lack of a common grading model

is due to the fact that every institution and even every teacher has his own way to

grade an assignment. In reviews carried out in 2010, the correctness is reported as the

4 http://innovacioneducativa.upm.es/proyectosIE/informacion?anyo=2012-2013&id=954

3

main criterion considered to grade. At that time, there was not a common approach

yet; maybe the first step to build a model could be to characterize grading criteria.

Most recent works have reported new improvements. Thus, RoboLIFT (Allevato et

al. 2012) has the feature of grading GUI applications; web programming languages

have been considered as well, for example VPL (Virtual Programming Lab) in

(Rodríguez-del-Pino et al. 2012) reported grading of PHP (HyPertext Preprocessor)

programs.

Nowadays, the problem of having a common model to grade persists. Then it is an

open research path. To propose a model to grade any programming assignment that

works for any teacher and for any institution would be very complicated or impossible.

The reason is that different criteria will persist. The solution could start considering a

more high level perspective, looking for a configurable process where different models

could be supported, thus any grading metric or criterion could be selected as the

academic staff needs.

1.2 Goals

1.2.1 General

To propose and validate a new architecture to support an automatic grading

process, which will be extensible, flexible and modular to support many ways of

assessments.

1.2.2 Specific

• To use the knowledge about scientific research, which was acquired in the

master course, in a real problem.

• To make a systematic review of related works to get an actual context in

automatic grading of programming assignments.

• To identify and use the most suitable features of software engineering,

which can be applied in this work.

• To gather a set of requirements based on necessities of the students and the

teaching staff inside the teaching-learning process of programming subjects.

• To analyze the requirements and the context to propose a suitable solution

for the given problem.

• To apply principles of software and services architecture to design a

solution for the given problem.

• To validate the architecture proposed through the implementation of a

working prototype and with the use of it in real case-studies.

• To evaluate the results for establishing conclusions and future works.

4

• To disseminate research results through scientific publications in

international forums.

1.3 Structure of the document

This work has been organized in five chapters after this introduction. The state of

the art includes: a systematic literature review of tools for automatic grading of

programming assignments; a characterization of criteria to grade programming

assignments and technologies used to evaluate them are reviewed as well; a

description of important features of orchestration technologies; a deep review of a

chosen tool, which will be used as base to implement new features; and a sight in LMSs

used nowadays. Next, the problem analysis aims to define the scope of this work and

to propose a solution based on the requirements’ analysis. After that, the design

chapter explains how the solution will work and provides of useful software artifacts

to help the implementation stage. The validation chapter makes the first level

validation focused on implement the proposed architecture. It shows important

considerations done while implementing the whole solution’s modules. These are

related with programming languages, useful libraries, integration issues, and so on.

Additionally, a second validation is done through two case-studies based on real

programming assignments. Finally, the last chapter shows the goals achievement, main

contributions and future work.

5

2 State of the art

The previous chapter has established the context for this work. The main goal is to

propose and validate a new architecture for automatic grading of programming

assignments. It makes necessary to review which similar works have been reported.

The first appearance of a tool for automatic grading of programming assignments

was reported in 1965 (Forsythe et al. 1965). It has been almost fifty years since that

happened and nowadays there are a good number of tools. Establishing the actual

situation of this research field will help to support that the given problem was correctly

identified. Then, a systematic review is essential and it will be presented here.

At the same time of carrying out this review, the decision between building a new

tool and taking one of the already built tools to validate the proposed architecture was

made. Actually, the second choice was more suitable and therefore a deeper

description about the selected tool is presented as well.

The systematic literature review shows an important element inside the grading

process, it is the grading criterion. A grading criterion is always related to one grading

metric at least. A characterization of grading criteria is presented to start with the

solution of the problem. Additionally, almost every characterized criterion has the

support of a tool to evaluate it, so a table of these tools is presented as well.

To manage the use of different grading criteria, their arrangement and their calls, a

technology to orchestrate is necessary. Some technologies which could act as

orchestrator are reviewed.

In spite of the proposed goals, it is necessary to consider that the goal of the SEAPP

project is to provide a solution to UPM. One of the requirements given by this

institution is the integration with its current LMS, Moodle. So, a quickly sight about

existent LMSs is provided. Some important features about Moodle are highlighted as

well.

2.1 Automatic grading of programming assignments

The common goal to build or to use this kind of tools has been to improve

programming skills in the students, paying special attention to beginner students. The

skills will be improved through solving many programming exercises. Students can go

on the problems as quickly as they get good feedback. It would help them to

understand their mistakes and therefore to improve their skills. Additionally students

6

get a real benefit, which is to get a fair grade not dependent on personal considerations

of the academic staff (Higgins et al. 2005).

Considering the quantity of students in a regular class of engineering and a big

number of programming exercises, manual grading is not viable. The idea is not

overwhelm the academic staff either, so another goal is to optimize the time of

academic staff. The saved time could be used in more productive processes like

planning and designing the lectures or just giving more personal attention in focused

problems.

As the research in this field increased, new goals were proposed. Thus, in (Patil

2010), (Rodríguez-del-Pino et al. 2012), (Yusof et al. 2012) and (Queirós et al. 2012) an

extra goal is getting the integration with a LMS to improve the performance of the

programming assignments grading process. In (Amelung et al. 2008) was proposed the

use of services to reach this goal. In (Spacco et al. 2006) one goal was to collect detailed

information to research deeply the students’ skill improvement process. More recently,

Allevato and Edwars (Allevato et al. 2012) have as a goal to get the interest of students

using the popularity of smartphones and mobile applications.

2.1.1 Contrasting previous reviews

Given the big quantity of already built tools since the first appearance, it is better to

take advantage of previous literature reviews. When contrasting these works, it is

possible to consider reported gaps, to identify which of them were solved, and which

have persisted.

Douce et al. in (Douce et al. 2005) made a good and quick characterization of the

evolution of this kind of tools until 2005. They reported three generations of tools. The

first one refers to times when working on operating systems and programming

languages was necessary, and the grading was only made considering a right or a

wrong answer. The second generation refers to working with tools, which came with

the operating system, to build new tools. C and Java languages were mostly used in

development. The third generation is just around the time that this work was done.

The main features in the reviewed tools were the orientation of using web-based

technologies. An increment in support for more programming languages was reported

as well.

Considering that Douce et al. (Douce et al. 2005) gave future paths for automatic

grading of programming assignments, and Ihantola et al. (Ihantola et al. 2010) and

Romli et al. in (Romli et al. 2010) made works covering tools developed until 2010, it is

possible to contrast them to show the improvement in some issues. These issues can be

classified as technical, pedagogical and for a system adoption.

7

Technical issues

Douce et al. indicated some research paths in (Douce et al. 2005), which included

grading of GUI programs; meta-testing which refers to qualify applied tests; use and

configuration of safe systems to test the programming assignments, the idea is to

protect the host system of intentional or unintentional malicious code; integration of

systems to avoid overwhelm the user, usually the idea would be integrate the tool with

an LMS, it can be reached using web-services; and support for web programming

grading because the use of web technologies in the normal life had increased, so

universities started to teach web programming and grading this kind of assignments

was necessary.

Ihantola et al. in (Ihantola et al. 2010) and Romli et al. in (Romli et al. 2010) reported

improvements in systems integration with LMS and in security for the host system.

Then, issues like grading of GUI programs, meta-testing, and support for web

programming stayed waiting for more research.

Pedagogical issues

The reviewed works lack a common grading model. Every institution and even

every teacher has his own way to establish a grade. So a reference model could be

helpful. In reviews did in 2010, the correctness was reported as the main criterion to

grade. Some works started to use static and dynamic analysis as well, but in general,

every work proposes its own criteria set to grade. As a result, at that time, there was

not a common approach yet; maybe the first step to build a model could have been a

characterization of grading criteria.

About feedback, there were some implications: quickly feedback could trigger trial-

error practices, how much useful is the automatic feedback, and which is the adequate

quantity of feedback. Some works try to provide flexibility, through configuration of

levels of feedback and allowing manual and automatic solutions (Edwards et al. 2008).

Some tools have considered the implementation of plagiarism detectors; this will be

seen later in this chapter. Usually the plagiarism control module is inside an additional

module but without affecting the grading process. Trying to consider a plagiarism

inside the grading process could be reflected in a too much time required to grade an

assignment. It is for sure that a module of this kind is necessary and a sanction in

detected cases as well.

Systems’ adoption

Regarding systems’ adoption, both works (Ihantola et al. 2010) and (Romli et al.

2010) showed that a big number of tools had been built but they were not broadly

used. It is because every tool had been built considering specific requirements. An

8

important way to increase the adoption was to work on open source projects. Some

projects had done this and its acceptance grew (Edwards et al. 2008) but a definitive

broadly used tool has not been reached. In (Romli et al. 2010) was proposed the

building of a flexible and parameterizable system and it seemed a good path to reach

this goal.

2.1.2 Analyzed key features

It is necessary to define a set of key features to be able to evaluate the reported tools.

The next key features have been defined considering they are important in

implementation and deployment stages:

• Supported programming languages. It is a very important feature when

making a quickly implementation is considered. It could define the use or not

of a tool.

• Programming language used to implement the tool. This feature has great

relevance when there is a set of policies regarding the software used in an

institution. In the case of customization or maintenance, it would be a valuable

feature to choose a tool.

• Logical architecture. It is an important feature when a modification of the tool is

being considered. This architecture will show the modularity, extensibility and

flexibility level. It could show how the different modules work and how the

system could connect with other systems.

• Deployment architecture. It shows how the hardware over which the tool

works is. It is helpful to know if a current environment will support the

deployment of a tool. In the worst case it will indicate the resources needed and

therefore will help to determine the cost of a possible deployment.

• Work mode. It indicates if the tool can work alone, or it work as a plugin when

integration with another system (an LMS for instance) is required.

• Grading criteria. It includes a set of criteria on which the tool can establish a

grade. It can include metrics associated to a given criterion. Even, how the

grade calculation is done.

• Technologies used by the tool. It is helpful when deploying or building a new

tool is considered. For a deployment case it is helpful to establish compatibility

between the tool and a legacy system. It is useful for future maintenance as

well. In a building case knowing which technology (standards, protocols,

libraries, etc.) could be used to face a requirement is very helpful as well.

9

2.1.3 Tools

The previous mentioned reviews showed relevant information about tools already

built and reported until 2010. It is necessary to make a new review of tools built in the

last years. Additionally, it is worth considering some important tools that have had a

continue actualization since their creation (CourseMarker, Marmoset, WebCAT, and

VPL). All of them are considered in the next review.

CourseMarker

A tool developed in the Nottingham University to avoid the particular criteria of

teaching staff. The main advantages are considered being scalability, maintainability,

and security (Higgins et al. 2005). The supported programming languages for grading

are Java and C++ and it has been built using Java. Its architecture shows 7 subsystems:

login, it controls all the authentication process; submission, it receives the different

submissions precisely; course, it stores information about the process; marking, it has

in charge the grading process, and the storing of the submitted files and marks

obtained; auditing, it has as responsibility to log all actions; and a subsystem to control

the communication among the others.

As criteria to establish a grade it considers typography (indentations, comments,

etc.), functionality through test cases, programming structures use, and verification in

the design, and relations among the objects.

It works with technologies like Java RMI (Remote Method Invocation) for

communication among the subsystems, regular expressions to verify results and

DATsys (Higgins et al. 2002) to verify objects design.

Additional important features include: the capability to work with feedback levels,

the orchestration among subsystems is defined by a configuration file, feedback and

grades can be customized, there is plagiarism detector when grading, submissions

number and CPU (Central Processing Unit) quantity are configurable, and finally there

are security considerations which include: detection of malicious code and execution in

a sandboxed environment.

Marmoset

It has been built in the University of Maryland. Its main goal is to collect

information about development process to improve the student skills (Spacco et al.

2006). Its main advantages are making a complete snapshot about the student's

progress, so the student development can be analyzed in detail; using different types of

test cases (student, public, release, secret); and a personal support through comments'

threads on the code.

10

Originally the paper reported grading of code written in programming languages as

Java, C, Ruby and Caml Objective. Now, the official web page5 informs that it works

with all different programming languages. The architecture includes: a J2EE (Java

Enterprise Edition) webserver, a SQL (Structured Query Language) database, and one

or more build servers. These last are used in a safe and lonely environment to prevent

effects of possible malicious code. The build servers’ arrangement helps to provide

scalability and security. The criteria to establish a grade include dynamic and static

analysis. The dynamic analysis is done through test cases.

WebCAT

The main features are the extensibility because of its plugins-based architecture and

a grading method based on how well students grade their own code (Edwards et al.

2008). The architecture design provides a set of important features: security, it is

provided through means like authentication, erroneous or dangerous code detection;

portability, because it has been built as a Java servlet; extensibility and flexibility, it is

inherent to the architecture; and support for manual grading as well, it is because the

academic staff can check students’ submissions and enter comments, suggestions, and

grade modifications. The official wiki6 affirms that it is the only tool that integrates all

these features.

The tool supports Java, C++, Scheme, Prolog, Standard ML, and Pascal, but it offers

flexibility to support any programming language. The grade is based on code

correctness (how many tests are passed), test completeness (which parts of the code are

actually executed), and test validity (test accurate-consistent with the assignment).

Additionally plugins can provide more metrics for grading (static analysis for

instance). Additional features include: there are a lot of plugins for Eclipse and Visual

Studio .NET IDEs, and it has been licensed as Affero GNU/GPL (GNU General Public

License).

Grading tool by Magdeburg University

It has a really interesting goal, which is providing a tool which is not forced to work

with a given LMS, but avoiding the use of two systems independently (Amelung et al.

2008). It can be reached using services. It shows a configurable focus. Then there are

selectable components like the compiler, the language interpreter, the grading method,

and the data set. The submissions' number, and time features are configurable as well.

The tool uses dynamic tests, compilers and interpreters to establish the grade. The

supported programming languages include Haskell, Scheme, Erlang, Prolog, Python,

and Java. The architecture is very interesting. It considers three servers: the front-end,

5 http://marmoset.cs.umd.edu/
6 http://wiki.web-cat.org/WCWiki/WhatIsWebCat

11

it will be an LMS system; the spooler server, it controls the request, the submissions

queues and the back-end calls; and the back-end servers, which are the modules to

evaluate a programming language. To communicate the servers, XML-RPC (Extensible

Markup Language - Remote Procedure Calls) has been used.

JavaBrat

It is a tool reported in (Patil 2010), and built as a master thesis in San José State

University. It gives support for two programming languages, Java and Scala. It uses

Java to develop the grader software and PHP to build a plugin for Moodle. The design

includes three important modules: a Moodle server with a plugin; a module which

contains the graders depending on language and a repository of problems; and the last

module is Javabrat which has a set of services to call graders and problems.

Although it can works as a Moodle plugin, this tool can work alone through a web

interface developed as part of the project. This web interface was developed using JSF

(Java Server Faces) 2.0. The services are implemented using JAX-RS (Java Api for

Restful Web Services).

The work was centered in develop the web interface and the problems' repository.

Then the grading process is not very complex and it is based on correctness, which is

determined by test cases. It is a semi automatic tool because a revision of the report,

generated when the grading process is done, is necessary.

AutoLEP

A tool developed in Harbin Institute of Technology and which is presented in

(Wang et al. 2011). It has as main feature the combination between static and dynamic

analysis to give a grade. The dynamic analysis refers to evaluating the correctness

using test cases. The static analysis doesn't need to compile or execute the code. It is

just about to make a syntactic and semantic analysis and it is reported as main

difference with previous works.

The architecture includes: the client, a computer used by a student, it does the static

analysis and can provide of a quickly feedback; a testing server which has to do the

dynamic analysis; and a main server which has to control the information of the other

components to establish a grade.

Petcha

A tool developed in University of Porto. Its main goal is the building of an

automatic assistant to teach programming (Queirós et al. 2012). An important feature is

the coordination among existing tools like IDEs (Integrated Development

Environment), LMSs and even automatic graders. It supports the programming

languages that IDEs do. The tested IDEs are Eclipse and Visual Studio.

12

Its architecture is defined as modules for every connected tool. Then, there is a

module for the LMS, the IDE, the exercises repository, and for the grading engine. It

relies on some technologies to guarantee interoperability: IMS Common Cartridge as

format to build packages with resources and metadata, IMS Digital Repositories

Interoperability and bLTI (Basic Learning Tools Interoperability). Additionally it used

JAWS (Java Web Start) to build the client interface and it is working with MOOSHAK

(Leal et al. 2003) as grading engine.

JAssess

It has been built by researchers in two universities in Malaysia, University of

Technology and Tun Hussien Onn University (Yusof et al. 2012). Their goal is to have

only one interface to access the grading process. JAssess is presented as an integrated

tool with Moodle.

Their architecture shows the next modules: Moodle server, MySQL server, JAssess,

and JAssesMoodle to communicate Moodle and JAsses.

About supported languages it only supports Java, and precisely it is the language

used to build the tool. This tool uses technologies as Java File, Java Unzip, Java

Runtime, Java Compiler and Java Reflection. About the criteria considered to grade, it

is a weakness for the tool because it only depends on compilation. The evaluation

process is not completely automatic.

RoboLIFT

The main approach is to get interest of students in programming using the

popularity of mobile applications and smartphones (Allevato et al. 2012). The

increasing market of android smartphones and applications makes increase the interest

of students. This knowledge will be helpful when they will finish their studies as well.

The tool supports grading of Android applications.

The tool is based on WebCat (Edwards et al. 2008), so the architecture is the same

with an additional variation. The variation is the use of Robolectric7, which is software

to accelerate the grading process. The tool uses the development tools for Eclipse

provided by Google.

Unit testing is considered to establish a grade. The tests are of two sorts, public and

private tests. The students know the first one kind, and the second type is only used in

the definitive submission.

7 http://pivotal.github.com/robolectric/index.html

13

Virtual Programming Lab (VPL)

A tool built in Las Palmas University (Rodríguez-del-Pino et al. 2012). The goals of

the project include to provide the students with many programming assignments, and

to support the managing and grading process. The tool supports many programming

languages including Ada, C, C++, C#, FORTRAN, Haskell, Java, Octave, Pascal, Perl,

PHP, Prolog, Python, Ruby, Scheme, SQL, and VHDL (VHSIC Hardware Description

Language).

The architecture includes three modules: a plugin for Moodle, which allows the

tool’s configuration and making submissions; a browser-based code editor, which

allows coding without the necessity of an installed compiler; and a jail server, which

hosts the environment where the assignment will be evaluated. To develop this tool

they have worked with PHP to build the Moodle plugin. To implement the jail server,

C++ has been used. Every language has an associated Linux shell script for evaluation

as well. The communication between Moodle and jail servers is done with XML RPC.

The jail server provides their services through a Linux program called Xinetd. In

addition the jail server implements a safe environment with the Chroot Linux program.

For grading it considers the correctness, done through test cases (in the default

configuration). The test cases are specified in an own and easy syntax. The default

scripts, which evaluate the programs, can be changed to improve the evaluation

method.

Additionally, this tool has some interesting features that include: being built under

GNU/GPL license, allowing automatic and semiautomatic grading processes,

providing of a plagiarism control tool, and having configurable features for every

assignment.

Moodle extension by Slovak University of Technology Bratislava

It is presented in (Jelemenská et al. 2012). Its main goal is managing and modeling

digital systems using HDL (Hardware Description Language). The work reports

managing features like assignments managing, and user type definitions. The only

language supported is VHDL.

The tool evaluates a submission based on: compilation and syntactic analysis,

functionality doing comparisons with a model, and then through a stage to detect

plagiarism.

2.1.4 Current situation analysis

The key features of each tool reviewed in the last section can be used to identify the

real improvements since the last literature reviews (Ihantola et al. 2010)(Romli et al.

2010) were carried out.

14

To analyze the improvements in a temporal perspective, two tables with tool’s

features are shown. Table 1 joins tools built a few years ago, previous to the work

presented by Ihantola (Ihantola et al. 2010) which have been updated continuously.

Precisely by their maturity, they count with really good features and in some cases

with a broad use.

Table 2 shows more recent tools, which have not been broadly used but that present

new features and propose new research lines.

Firstly it is necessary to consider the pending issues reported until 2010. They were

mentioned in an earlier section and include: technical issues which include lack of a

GUI grading tool, meta-testing, and support for web programming; pedagogical issues

including lack of a model to grade, trial-error practices, adequate quantity of feedback,

and plagiarism; and adoption issues.

Table 1. Mature tools

Tool's name Main Features
Supported
Languages

Work Mode Grading criteria

CourseMarker

Scalability, maintainability.
Security, configurability.
Plagiarism detection.
Work with levels of
feedback.

Java, C++. Standalone

Typography.
Correctness.
Structures use.
Objects design.
Objects relations.

Marmoset

Detailed information.
Language independence.
Security and scalability for
evaluation module.
Apache 2.0 license

Any language. Standalone
Dynamic and static
analysis.

WebCat

Extensibility and flexibility
based on plugins.
Access security.
Portability.
Semi and automatic
process.
GNU Affero license.

Java, C++,
Scheme, Prolog,
Standard ML, and
Pascal. Flexibility
for any language.

Standalone

Code correctness.
Completeness.
Test validity.
Extensible by
plugins.

Virtual
Programming
Lab

Moodle integration.
Customizable grading
mode.
GNU GPL license.
Plagiarism detection.
Configurable activities.
Jail environment.

Ada, C, C++, C#,
Haskell,
FORTRAN,
Java,Octave,
Pascal,PHP,
Prolog, SQL,
Ruby,Python,
Scheme,Vhdl.

Moodle
plugin.

Correctness based
on test cases.
Open for new
methods.

Grading Tool
(Magdeburg
University)

Use of services.
Configurable evaluation
process.

Haskell, Scheme,
Erlang, Prolog,
Python, Java.

LMS
extension.

Compilation.
Execution.
Dynamic tests.

Plagiarism has been seen as an important module inside an automatic grading tool.

Then, some projects have already considered its implementation.

15

As it can be seen most of these issues have been solved. Thus, RoboLIFT has the

feature of grading GUI applications because it uses LIFT, a library included in the

WebCat project to grade GUIs. Web-oriented programming languages have been

considered as well, VPL can grade PHP programs for instance. About meta-testing,

WebCAT refers to validate tests. It can be done through determining how much of the

code is being covered by executed tests.

The adoption of a tool depends on some features, which include: how long the tool

has been tested, if the tool has been developed as open source, how flexible, scalable,

and configurable the tool is.

Table 2. Recently developed tools

Tool's name Main Features
Supported
Languages

Work Mode Grading criteria

JavaBrat
Use of services.
LMS integration.

Java, Scala
Moodle plugin.
Standalone.

Correctness.

AutoLEP
Static and dynamic analysis
to grade.

Standalone
Static analysis.
Dynamic analysis.

Petcha

Coordination among
existing programming-
support tools.
Use of technology for
interoperability.

Languages
supported by
Eclipse and
Visual Studio.

Standalone Based on test cases.

JAssess Moodle integration. Java Moodle plugin. Compilation

RoboLIFT
Grading mobile
applications.
GUI grading.

Java Standalone
Unit testing (public
and private).

Moodle ext.
(Slovak
University of
Technology)

Oriented for digital
systems.
Plagiarism detection.

Vhdl. Moodle plugin.

Compilation.
Syntactic analysis.
Functionality by
comparison.

There is a big quantity of tools for programming assignments automatic grading.

Then, does it make sense to continue building new ones? Usually the main reason to

build a new tool is that the existing ones do not fulfill our requirements. If this is the

case, to get the tool and extend it through a plugin may be a good idea.

Table 1 shows important information that supports the reuse of tools; this is based

on existing tool features like extensibility, flexibility and configurability. All these set of

features could guarantee the cover of many requirements for a given case; and for

specific requirement it could be possible to build only an extension for the tool. It

would reduce the implementation time.

The information in Table 2 shows that Java is the most common supported language

by recent tools. Older tools have already supported this language and this cannot be a

16

sufficient reason to build a new one. If new support for a given language is necessary,

it can be done through adding a new submodule or plugin to extensible tools as well.

A remarkable fact is the use of LMSs in most universities. The ideal thing would be

to seamlessly use the automatic tool within the LMS. Some recent tools are considering

the integration with an LMS but they do not provide features like extensibility,

flexibility, and maintainability as the older ones do. Maybe the next step to evolve with

automatic tools is to add the LMS integration feature to the set of features of the

mature tools. Probably it could be reached by a redesign of the tools to allow different

gates (user interfaces) to access to the system. This goal could be reached through use

of services. The gate could be a module in the LMS or a module developed in any

technology to build user interfaces.

Finally, the lack of a common model to grade is still an important and persistent

problem. Every institution and even every teacher has his own criterion to grade an

assignment. Then, if defining a common model for grading is not possible, a solution

could be designing and implementing a flexible architecture that supports different

ways of grading programming assignments.

2.2 Grading criteria

As it was said in the former section, the lack of a common model to grade is still an

important problem. Every institution and even every teacher has his own criterion to

grade an assignment. Additionally, as Rodriguez at al. in (Rodríguez del Pino et al.

2007) say, it is necessary to recognize that some criteria cannot be measured. The

creativity or the right sense of a comment cannot be determined by an automatic tool.

Leaving out this kind of criteria, and considering the importance of defining a frame, a

characterization of criteria is proposed as a first step to reach a possible grading model.

2.2.1 Grading criteria characterization

The importance of a characterization can be inferred by seeing Tables 1 and 2. There

is diversity of criteria to grade. For example one tool just considers whether the code

can be compiled while others include a criteria set (even considering extensibility of

them through new plugins). Additionally, some tools refer to the same criterion by

different names.

Looking at all grading criteria expressed in the previous tables, Table 3 shows a

characterization for grading criteria. This characterization takes the diverse criteria and

put them in a common and organized representation. This has been done considering

applicable quality attributes given in (Sommerville 2005). These attributes are

considered as external and cannot be measured directly. It is necessary to measure

more internal attributes for software, they are the metrics. Quality attributes and

17

metrics are related through a medium element, it is the criteria (Yelmo 2012). For

example maintainability is a quality attribute, which can use some criteria to be

determined, one of them is complexity; and this criterion can make use of some

metrics, one of these metrics could be the number of flow control structures used in a

program.

Table 3. Grading criteria characterization

Quality attributes (external) Criteria

Execution
Compilation

Execution

Functional Testing Functionality Correctness (system or method level)

Non Functional Testing

Specific requirements Specific requirement for an exercise

Maintainability

Design

Style

Complexity

Efficiency

Use of physical resources

Execution time

Processes load

Code weight

The quality attributes and criteria cannot be directly quantified but they can be

evaluated through metrics quantification. The, there are some software tools that allow

evaluating criteria through reports about metrics quantification. Thus:

• For compilation, a language compiler will allow knowing about the number

of errors and warnings.

• For execution, a language interpreter will show some data including the

success of a program, the number of warnings, and the number of thrown

exceptions.

• For functionality, a program based on test cases (JUnit8 in Java for instance)

can be used. This will report the number of total and failed tests.

• For specific requirement, a particular program to see the use or not of a

programming structure for instance will be necessary.

• For design, style and complexity, an external program will be needed

(Checkstyle9 for style in Java for instance).

• For the last four criteria, it could be useful shell script programs.

Some of the already reviewed tools offer the possibility of support any grading

criterion through the building of plugins. Considering a complete grading process

would be better. This grading process would have as features: a high level of

8 http://www.junit.org/
9 http://checkstyle.sourceforge.net/

18

configurability and flexibility to support any metric. The goal is not see just a metric or

criterion; it is to consider the whole grading process.

2.2.2 Technologies to evaluate criteria

Considering that the goal is to propose an architecture to support a flexible grading

process, and taking into account the previous criteria’s characterization; here is

presented a set of open source tools, which allow evaluating a criterion or some of

them in source code files.

Initially, every criteria of the characterized set could be evaluated through our own

programs or tools, which would be designed to reach a specific goal. But taking

advantage of already built tools would be possible; these tools are shown in Table 4.

This would avoid unnecessary implementations. The features about input parameters

and output results could be used as helpful information to define wrappers to support

them inside the proposed architecture (it will be seen in the design chapter).

Table 4 shows that most of these tools are focused on evaluating criteria for Java

programs. This fact is because most of these tools have been developed based on JUnit

testing framework. But, they add additional features as the possibility of getting data

from a database, of evaluating GUIs, and returning evaluation reports for instance.

These tools evaluate criteria as correctness, use of physical resources, execution

time, processes load, execution time, design, style and complexity. Correctness is the

most supported criterion. It could be the reason which explains that most of the

automatic grading tools seen in the systematic literature review carried out only use

correctness to grade.

Some criteria have not been taken into account for the considered tools. These are

compilation, execution, specific requirements, and code weight. It makes sense. In the

first two cases it is because every language has its own associated compiler, debugger

and program interpreter. These three elements will be used depending on the type of

language: compiled or interpreted. For the third case, precisely its conception makes

necessary a specific program. The program would evaluate the use of a given

command or programming structure for instance. In the last case, it would be easy to

implement it using a function or a shell command.

Table 4 provides useful information to define a wrapper when designing the

solution. As first sight, it is notable that the input to every tool always includes a file or

a parameter additionally to the program to be evaluated. For the output, all tools

provide a result through the console or in a formatted file. It gives the idea that reading

the standard output or to look for information in result files would be necessary.

19

Table 4. Tools for evaluating programs

Tool's name
Supported

programming
languages

Input Output mean Criteria

Junit Java Test cases file. Console Correctness

Feed4JUnit Java

Test cases file.
Test data for DB (Data Bases)
or data sources (csv or excel
files).

Console Correctness

Cucumber
Ruby, Java,
.Net, Flex, C#,
Python.

Behaviour file, definitions file
and steps definition file.

Console Correctness

Luaunit lua Test cases file.
Console.
XML file.

Correctness

Maverix Java [GUI] -
Console.
Web report.

Correctness

Robotium Android
Test cases file.
Application to test.

- Correctness

Harness Java XML file with test cases. XML file. Correctness

Jfunc Java Test cases file. Console Correctness

google Test C++ Test cases file. XML file. Correctness

Phpunit Php Test cases file.
Console.
XML reports.

Correctness

TestNG Java
Test cases file.
A build.xml file [for ant]

Console.
Web report.

Correctness

Feed4TestNG Java

File with test cases and
annotations.
Data sources (csv or excel
files).

Console Correctness

p-unit Java
Test cases file.
Instructions to start time and
memory registration.

Console

Correctness.
Memory
consumption.
Execution time.

ContiPerf 2 Java
Test cases file.
Configurations tags.

Console.
Csv file.

Correctness.
Processes
number.
Execution time.

PMD

Java,
JavaScript,
XML, XSL,
JSP.

Rules file.
Files: text, xml,
html , nicehtml,
or xslt.

Style.
Complexity.

JavaNCSS Java -
Files: XML,
XSLT, SVG

Design.
Style.
Complexity.

Checkstyle Java Rules file. Console Style

FindBugs Java XML file with filters
Files: XML,
html, emacs,
xdocs.

Style.
Debugging.

20

Additionally during the review there was found an important tool to evaluate

criteria, it is Sonar10. Its goal is to manage code quality. It supports evaluation of more

than 20 programming languages including Java, C, C++, C#, Python, JavaScript, and so

on. As criteria to evaluate the quality, it considers architecture and design, comments,

coding rules, potential bugs, complexity, unit tests, and duplications. It could be useful

for enterprise environments. For the goal of the project, it would be limited by the

extensibility regarding programming languages, which depend on updates, and for the

lack of support to assign weighting to criteria inside the grading process.

Finally it is worth standing out that some languages do not have tools to evaluate

some criteria. It should be taken into account in the area of software testing for future

work.

2.3 Technologies for orchestration

Supporting many ways of grading inside the proposed architecture, which will be

seen deeply later, implies working with some software components arranged

differently each time that a call is done. Every component inside the grading process is

a program, which quantify a given metric and allow evaluating a criterion. Then, when

a grading process is started, an element to control calls to every program is necessary.

This new element is the orchestrator.

The orchestrator will work in every grading process, defining which programs to

call, the order of calls, calling the programs, giving parameters to the programs,

managing dependencies and so on. A review of which tools could work as orchestrator

is helpful to avoid the building of a new one if possible. At least some features of a

given tool could help to face issues if the building cannot be avoided. Thus, a brief

description of some tools is presented:

• Apache Ant11. - It is a Java library that is used mostly to build Java

applications. It can build applications implemented in other programming

languages as well. In a general way, Ant can be used to support any process

that is described as targets and tasks. The target is a set of tasks and the tasks

are piece of code, which execute actions on input parameters. The process is

described in a XML file called build.xml.

Other advantages include: the possibility of be called as a console program

(indispensable to be integrated to VPL), working in a high level (using Java

objects), the availability of a set of built-in tasks, and the possibility of extend

this set with own built tasks. To build a new task, it is necessary to write a

Java class which extends from a given class and so it has to implement some

10 http://www.sonarsource.org/
11 http://ant.apache.org/

21

methods, and after that registering the new created task is necessary. The

registration includes some information about the class name, the path to the

class, the package name and the arguments in a XML format.

The project recommends to work with Ivy12, which is a dependencies

manager integrated with Ant and that has the same principles.

• Maven13.- It presents two important goals: the first one is to provide of a tool

which manages the building and the dependencies control in Java projects;

the second one is allow the quick comprehension about the state of a project

development. A Maven project is defined in a XML representation as well.

This is known as POM (Project Object Model) and the representation’s name

is pom.xml.

An important feature is the extensibility through the use of plugins written

in Java or scripting languages. The building of new plugins is done based on

Mojos, which are simplest Java programs for Maven. Any new Mojo has to

extend from a base abstract Mojo and therefore implementing a method.

After that, defining the new plugin is necessary. The definition includes

information about the version, the identification, the package, the group, the

name, and additionally about dependencies (group, id, and version). This

information is written in a XML format.

• Gradle14. - Its official site says that it is an evolved building tool because it

can automate the building, testing, publishing, deployment and more of

software projects. It has been built on Ant and Maven. It supports on a DSL

(Domain Specific Language) based on Groovy language and provides of

declarative language elements. It can work with Java, Groovy, OSGi (Open

Services Gateway Initiative), Web and Scala projects. It uses a script written

in Groovy to control the process. The XML representation of Ant and Maven

projects can be interpreted or converted to a Groovy representation.

There are a set of already defined tasks, but writing new ones is possible.

Additionally, Gradle can be called through the command-line.

• GNU make15. – It is a program that can manage processes to generate

executable programs, or another kind of files, even programs’

installation/uninstallation from a set of source files. Then, it is not a tool

only to build applications and it is not limited to a specific programming

language. The process is composed of a set of stages. All of them are defined

in a file called makefile. Every stage defines a target, a set of dependencies

and a set of shell commands to execute.

12 http://ant.apache.org/ivy/index.html
13 http://maven.apache.org/
14 http://www.gradle.org/
15 http://www.gnu.org/software/make/

22

There are not defined tasks, but new of them can be defined through using

command-line calls. So it would be possible to call directly other programs

through these calls.

In most cases the goal is to build, deploy or install an application. Although it is not

the goal of this project, it is very useful knowing about the main features of this kind of

tools, to determine if one of these features can be emulated or used. It can be seen a

common fact among these tools and it is the use of a configuration file, which allows

managing the process.

In the design chapter there will be deeper information about the decision of using

one of these tools or building a new one.

2.4 Virtual Programming Lab

It is a quite mature tool developed by Las Palmas University under GNU/GPL

license. Because of its features fulfill most of the requirements gathered (the

requirement analysis will be shown in the next chapter) for the project it has been

selected as the base tool. Therefore it is necessary to make a deeper review about this

tool. The documentation, help and code can be obtained from the official site16. The

information about the architecture can be obtained from the article written by

Rodriguez et al. in (Rodríguez-del-Pino et al. 2012). The different releases have been

tested since 2009/2010 academic course. It means that the tool has been tested by many

activities and submissions. It has had a good acceptance by academic institutions. The

cited article reports about 50 institutions around the world.

2.4.1 Main features

Its main features include:

• Support for many programming languages (a list was given in a former

section).

• Application access through Moodle interface. The resultant grade of the

grading process can be integrated with the Moodle grades module.

• High level of configurability, it includes physical resource use, actions

allowed to students (debug, execute and evaluate their code), files required

for evaluation (names and number of files), and so on.

• Customizable grading process, it provides of default scripts to grade every

programming language but it can be changed by the teaching staff.

• Safe architecture, it has been separated in the Moodle server and the Jail

server; the second one is a safe environment prepared to support effects of

intentional or unintentional malicious code.

16 http://vpl.dis.ulpgc.es/index.php

• Pos

inst

• It pr

• Easy

• Sup

pub

amo

• Beca

2.4.2 Architectur

The archite

the user mach

deployment s

servers are so

should be inst

The user m

Java applet, w

executing prog

The Mood

this LMS. The

end of the app

start the gradin

the plugin as w

The Jail ser

code, grade th

grading proce

the programs.

grading proce

17 Retrieved from
virtual programming

Possibility to code in the browser

installed.

It provides of a powerful tool for p

Easy way to define test cases.

Support of the tool’s creators. It ha

published in Moodle official site

among users of it.

Because of its license, it can be mod

Architecture

rchitecture considers the use of two

 machine, with a Java applet. In the

ent server will be needed. Figure 1

are software programs, but to gua

e installed in a different physical or

ser machine is worth mentioning b

let, which allows online coding. Ac

g programs using the web browser.

oodle server is considered because

. The plugin has been built as a M

e application and allows managing

rading process and so on. The sub

in as well.

Figure 1.VPL’s

ail server is quite important, this pro

ade them through a given process,

 process, it provides of a safe environ

rams. The environment is dynamica

 process has finished.

d from RODRÍGUEZ-DEL-PINO, J. C., RUBIO
gramming lab for moodle with automatic asse

23

wser, which avoids the necessity of

l for plagiarism detection.

. It has been released as a Moodle plu

l site and has a forum to help and

e modified and used as anyone need

f two servers the Moodle and the Jail

n the most basic physical architectu

1 shows the architecture where

o guarantee a safe environment e

al or virtual server.

because the web browser should

g. Actually, VPL allow coding, deb

cause VPL has been developed as a

s a Moodle activity. This provides a

ging the activity, configuring the pa

he submodule for plagiarism detectio

PL’s architecture17

is provides a service to receive prog

cess, and send back feedback. Cons

nvironment to compile, debug, execu

amically built and then it is destroy

RUBIO-ROYO, E. and HERNÁNDEZ-FIGUEROA,
atic assessment and anti-plagiarism features

sity of a compiler

dle plugin, so it is

lp and collaborate

e needs.

he Jail server and

itecture, only one

here both of the

ent every server

should support a

g, debugging and

d as a plugin for

ides all the front-

he parameters, to

etection is inside

 programs source

. Considering the

, execute, and test

estroyed after the

UEROA, Z. J. A

 features

24

About the communication means in the servers, the client machine and the Moodle

server use HTTP (Hypertext Transfer Protocol) requests and responses. The Moodle

and Jail servers use XML – RPC protocol over HTTP to communicate.

2.4.3 Technologies

Knowledge about technologies used to build a tool is very important when

considering integration with other systems, or when the goal is to develop an

extension, or even to provide an idea about how to face a requirement for building a

new tool.

In this case, the used technologies played an important role to choose VPL. The used

programming languages can influence directly in the implementation time. The

information about extra software is necessary to set up a test environment. The

knowledge about the communication protocol can be helpful to determine the right

transmission of data and identify possible bugs.

Programming languages for building the tool

VPL has been developed using some programming languages as PHP, C++ and

Linux shell scripting. For the front-end it uses web programming languages as HTML

(HyperText Markup Language), CSS (Cascading Style Sheets), and JavaScript. In case

of changes, working with the first three will be most probable.

C++ has been used to develop the Jail server. In case of modifications, making

changes on the code, compile again, replace the binary server application and restart

the service would be necessary.

Linux shell scripting is required to change the default grading process. Currently,

there is a shell script program depending on each supported programming language.

The grading process uses two shell script programs. They are called orderly by the Jail

server. The first one is related to evaluation based on compilation and it generates

automatically the second one. The last is related to the execution of test cases. The first

script can be modified through the web interface.

PHP was used to develop the plugin. It was because Moodle is developed in this

programming language. In case of changes, it would be necessary to use the APIs

(Application Programming Interface) provided by Moodle18.

More details about changes will be presented in the validation chapter.

18 http://docs.moodle.org/dev/Main_Page

25

Xinetd (Extended Internet Services Daemon)

It is an open source program considered as a super server, which works on Unix-

like systems. It can start other servers to provide a given service over Internet.

The official site19 shows a list of important features and it provides the source code

to download the current release. The most important features include:

• Access control, managing allowed and denied hosts, limiting the number of

incoming connections (total and for a given service), binding a service to a

specific IP (Internet Protocol) address, and so on. The connections can be

TCP (Transport Control Protocol), UDP (User datagram Protocol), or RPC.

• Prevention of DoS (Denial of service) attacks, precisely by limiting the

incoming and simultaneous connections, and limiting the number of servers

of the same type at a given time.

• Extended logging abilities including configuration of logging level for every

service, writing logs in different files, and so on.

• Offload services that use TCP, redirecting the streams to another host.

• IPV6 support.

All the mentioned features define the main advantage of use this program, which is

improving the security and reducing the risk of DoS attacks (Raynal 2001).

Raynal in (Raynal 2001) provides of useful information to compile, install, and

configure this program. A set of examples and their explanations are shown as well.

XML – RPC Protocol

The protocol defines a simple schema to implement RPC using XML for encoding

the body of the request. The total message is sent on an HTTP-POST request.

The header of the XML-RPC request contains information about the HTTP request

type, the HTTP version, the URI (Uniform Resource Identifier), the user agent, the host,

the content type and content length. The payload is encoded in XML, which has the

procedure’s name to call and a set of parameters if needed. Figure 2 shows a basic

request example.

The header of the XML–RPC response includes information about the HTTP

version, a code when there was not an error, the connection state, the content length

and content type, the current date – time, and server data (hostname and agent). The

payload is encoded in XML and it contains only one parameter or a fault element.

Figure 3 shows a basic response example.

19 http://xinetd.org/

26

Figure 2. XML–RPC request.

When talking about a parameter or a fault element, both of them have a value. This

value can be scalar (int, boolean, string, double, dateTime.iso8601, base64), structure or

an array. In the last two types, they can have inside more values willing depending on

each case. So, it is possible to send some fields of information although included in one

parameter.

Figure 3. XML–RPC response.

27

For further information it is highly recommendable to visit the site (Winer 2003),

this contains the specification.

2.4.4 The grading process

When an activity is created, it could work as a basic process where the most of

parameters are set by default. In this case the teaching staff creates the activity and the

students can send the source files depending on established requirements. The student

could use the code editor to write the programs as well. This scenario does not

consider any metric to grade the assignment. So an automatic grading is not possible.

To implement an automatic grading it is necessary to add some test cases. These

should be written in a specific syntax that is not complicated. Basically, defining the

inputs and outputs for the program is necessary. So the only criterion to grade is the

correctness through a metric given by the number of success test cases. It is possible to

define more complex grading process, which could consider more metrics and criteria

to establish a grade. In this case it is necessary to modify the default script for the

activity’s evaluation. Additionally and if it is needed, some files should be uploaded.

For example files which has test cases or rules files required for a given tool.

In a general way there is a set of files required for an activity, and they are collected

by the Moodle server and sent to the jail server. This server builds an environment

with parameters received in one of the files. The grading process is carried out and

finally the environment is destroyed. The stages can be seen in Figure 4.

The stages since the Moodle server perspective:

• Receiving a signal that indicates the user has started the process.

• Collect of information about parameters for the grading environment. These

include maximum limits for execution time, files’ size, required memory,

and for number of threads to create.

• Creation of a shell script with all data collected previously.

• Collect of source files sent by the student.

• Identification and collection of shell scripts to compile, debug, and execute

the program files depending on the programming language.

• Integration of all data collected into packages previous to send them.

• Read of parameters to establish a connection with the jail server. These

include maximum time to keep a connection, the servers’ list and so on.

• Selection of a jail server and the connection’s set up.

• Data stream transmission.

• The server waits for a response and closes the connection after this event.

• It shows the results to the user.

28

Figure 4. Automatic grading process

As it was said before, the service is deployed in the Jail server using xinetd. When

the request arrives, a program takes this and executes a set of actions:

• Receive the request and transferred data.

• Create a user and a home directory. Both of them are temporal.

• Set environment’s parameters.

• Copy the data inside the directory.

• Set the user as owner of the directory.

• Use the program chroot to build the jail.

• Run the grading process and save the results (grade and feedback).

• Send the result to the Moodle Server.

• Clean the temporal environment.

Jail ServerMoodle ServerStudent

Send assignment to grade Create a script with execution environment
parameters

Collect source files

Collect scripts based on the programming
language

Build a HTTP request object

Select a Jail server

Configure and establish a connection

Send a HTTP request

Receive HTTP response

Return results of the evaluation

Receive HTTP request

Process assignment evaluation

Send evaluation HTTP response

Set up the environment

Destroy the environment

29

2.4.5 VPL’s suitability

There are a lot of requirements gathered from stakeholders’ necessities and from the

review of previous similar experiences. The whole set of requirements and how much

VPL suits them will be explained in the next chapter.

The reasons that made this tool stood out from the others include: the GNU/GPL

license, so it is possible to use and modify this regarding the own necessities; the

easiness to access the documentation, help and to download the source code; the

feature of working as Moodle plugin, it suits a very important non functional

requirement for the final goal; its module for plagiarism detection; its security features

regarding authentication and working with a safe test environment; its ability to allow

defining assessment scripts, it gives the possibility to consider more metrics and

criteria to grade; and it can support automatic and semi-automatic processes.

Despite its suitability with many requirements, VPL don’t fulfill all of them. The

main weaknesses include: the lack of flexibility, and modularity to define a grading

process; not providing extensibility for supported programming languages; and the

lack of more advanced statistical reports.

Taking into account the previous explanations, VPL has been selected as base tool to

support the validation of the proposed architecture but it will be necessary the

implementation of a new modules inside it as well.

2.5 Learning management systems

They are software that helps teachers to manage the process of learning. This

managing can be applied on users, contents, activities, and so on. They play an

important role in e-learning process. Although this kind of tools could be considered as

a main mean to teach, usually they are used as supplement to classroom education

(Unesco 2008).

There is a big set of tools for learning management. Many of them have been built

with commercial goals, but there are several free and open source LMSs as well.

Precisely, it is necessary to decide about which one to choose. Some criteria can be used

to differentiate and select among all LMSs, for instance user interface, licensing and

pricing, services for course building and training, and integration with other on-

campus systems such as e-mail and registration, and so on (Unesco 2008).

Although the user interface will be very different among LMSs, the common thing is

the use of Web 2.0 resources to make rich and interactive interfaces, and to implement

some resources to improve the collaboration, wikis and forums for instance. One

important goal aimed by LMSs is trying to get a high level of compatibility, which is

reached with standards accomplishments. For example the implementation of SCORM

30

(Sharable Content Object Reference Model), this is a set of standards and specifications

to guarantee interoperability and reusability in content and systems.

They can be sorted considering different scopes. These could be built-in

technologies, accomplished standards, and so on. Considering the classification

proposed in (Eckstein 2010), some tools are described. They have been sorted as free

and open source, and paid-for.

2.5.1 Paid-for

Some of these tools are oriented to a deployment in enterprise environments.

However, the most of them can be deployed in much kind of organizations

(educational and governmental for instance). There are many of them and they have a

big set of features, these can be looked in the official web sites. The goal here is just to

mention a few of them to have a general knowledge about their existence.

Blackboard20 offers mobile support. JoomlaLMS21 provides a multilingual

environment, fills requirements for WAI (Web Accessibility Initiative), gives

integration with social learning tools through JomSocial, and supports e-commerce

through different subscriptions modes. SabaLearning Suite22 is full oriented to a

business and industrial scope; it provides collaborative learning, social, contents’

integration and mobile availability to accelerate the teaching-learning process.

SharepointLMS23 is based on Microsoft Office SharePoint.It offers a multilingual

interface, uses Microsoft’s tools for multimedia communications and guarantees a high

level of security and scalability.

2.5.2 Free and open source

It is a good alternative to take advantage of this kind of tools in the learning process.

There are a quite good number of tools in this category, in (Aydin et al. 2010) it is

mentioned the existence of fifty FOSS (Free and Open Source Systems) LMSs. The

references of many of them can be obtained in the site for free and open source

software for e-learning of the Unesco24 (United Nations Educational, Scientific and

Cultural Organization).

Every tool has its own set of offered features, which will depend on the developer’s

community that supports the tool. In a general way, most of these tools try to offer

multilingual interfaces and do a good effort to get certifications for accessibility and

interoperability. It is important to consider that although these tools are open source

20 http://www.blackboard.com/
21 http://www.joomlalms.com
22 http://www.saba.com/learning-management-solution/
23 http://www.sharepointlms.com/
24 http://www.unesco.org/iiep/virtualuniversity/forumsfiche.php?queryforumspages_id=9

31

and the most of them express clearly a GNU/GPL license, there are some of them that

offer limited version as open source code and the complete version is offered as paid-

for.

ATutor25 has as main features: support for many compatibility (W3C WCAG,

ISO/IEC 24751, among others), and interoperability (OpenSocial, SCORM 1.2, among

others) standards. It has been released under GNU/GPL license. It integrates features

of social networks. It supports the Oauth (Open Authentication Protocol) as well. As a

key feature, this tool has a broad documentation to help developers.

.LRN (Learn Research Network)26, based in the information of its official page, it is

the most adopted tool for e-learning and digital communities. It is used for a half

million users around the world. The users include higher education, governments,

non-profit organizations, and so on. It supports accessibility standards. About used

technologies, it makes use of RADIUS (Remote Authentication Dial In User Service),

Kerberos, and so on for authentication; it uses RSS (Rich Site Summary) and web

services as well. As an additional feature, it has modules for e-commerce.

Sakai27 aims to accomplish with W3C (World Wide Web Consortium) accessibility

requirements for contents. It offers two environments with free access. The first one is

an environment for learning and collaboration, and its source code can be downloaded.

The second one is an open web environment with a vision of academic collaboration.

Ilias28 is certified SCORM 2004 and has a GNU/GPL license. It has been certified by

NATO (North Atlantic Treaty Organization) as a safe LMS. For authentication it uses

RADIUS and mechanisms based on SOAP (Simple Object Access Protocol). The SOAP

interfaces can be used to communicate with external applications. It offers flexibility

and versatility.

There are more tools as Claroline29, OpenElms30, eFront31, their information can be

retrieved from their official web sites.

Finally, in (Aydin et al. 2010) a comparison among more representative LMSs in this

category is carried out. The features to define the most suitable tool took in

consideration features like the support for many languages, the modular and flexible

25 http://atutor.ca/
26 http://dotlrn.org/
27 http://www.sakaiproject.org/
28http://www.ilias.de/
29 http://www.claroline.net/
30 http://www.openelms.org/
31 http://www.efrontlearning.net/

32

design, and the supported ways for authentication. It concluded that Moodle has

advantage in the most of features respect other tools.

2.5.3 Moodle

It is a LMS under GNU/GPL license. Moodle’s begin dates from the Dougiamas’

PhD thesis (Dougiamas et al. 2003). Nowadays, he is still leading the project and there

is a big community of developers supporting this tool.

Moodle is broadly used in learning environments for academics and government

institutions, military and health organisms, among others. According to statistics in the

official web page, there are more than 75000 registered sites. These sites belong to 215

different countries. Spain is in the second place with 6504 registered sites32.

Moodle is offered as a tool that can supply of flexible and adaptable e-learning

environments. It can be used since just to provide contents until setting up a complete

environment customized for collaboration and work among many users with different

roles supported by many resources.

The environments can be customized through the creation of contents, activities,

tasks, courses, users, roles, and so on. More resources include: forums, wikis,

communication resources as chat, and so on. The resources can be extended by the use

of additional plugins or by the integration with external tools. The integration can be

done because Moodle supports standards for share information (supports SCORM 1.2

for instance) and protocols to communicate with other systems.

Other important advantages include:

• Authentication means supported. These could include authentication with e-

mail confirmation, LDAP (Lightweight Directory Access Protocol),

registration with e-mail or news servers, and so on.

• The deployment is relatively easy; it only needs of a web server with PHP

(HyPertext Preprocessor) support and a SQL data base.

• There is a lot of documentation available. In the official page there is

documentation to start with develop, to collaborate solving issues, and

references to helpful information.

• This tool is supported by a big quantity of developers around the world,

which implies a big number of plugins, and its correspondent actualizations

and support.

32 Information retrieved on February 3, 2012 from http://moodle.org

33

• Additionally, there are many research projects that include, plugins’

development, studies to improve the teaching-learning process, and even on

data mining.

2.6 Chapter summary

This chapter has shown information to understand the context of the problem and

useful technologies, which will help to solve it. The covered topics include a systematic

review of tools for automatic grading of programming assignments, a characterization

of criteria to evaluate programming assignments, a quick sight of technologies used to

evaluate these criteria, a deep description about VPL as a base tool for the

architecture’s validation, and a quickly review of LMSs highlighting Moodle.

The systematic literature review shows that this research field is a hot topic. The

necessity of tools for automatic grading of programming assignments has been alive

for almost fifty years. While new tools were proposed, new gaps were reported as well.

The main gaps reported include plagiarism detection, support for grading of GUI

programs, the lack of a model to grade, support for web programming languages,

meta-testing, security for the host system, LMS integration, the lack of a broadly

acceptance for a given tool, and so on. Nowadays, many of them have been considered

but there are some of them still waiting for a solution. One of the most important is the

lack of a model to grade. The solution maybe is not providing a common model for

every case. Probably, the solution is to see in a higher perspective and provide an

architecture, which can support many ways to grade.

The lack of a model to grade and the diversity of grading ways applied are

intrinsically related. This diversity means considering different grading criteria, and

different number of them inside a grading process. The systematic review showed

many criteria and associated metrics considered to grade, but there was not a

characterization of them. So, a criteria’s characterization has been proposed as a first

stage to go on with a solution to this issue.

Almost every identified criterion has a tool that can evaluate it. A summary table of

this kind of tools has been presented. It allows knowing which criterion or

programming language has not been yet supported. The knowledge about input

parameters and return values is useful to define a wrapper, which will be used inside

the proposed architecture.

To validate the proposed architecture it is necessary to use a tool to grade

programming assignments automatically. Using a tool already built would be helpful

to save implementation time. VPL has been selected as this tool. Then, its main features

and architecture have been shown. The grading process inside VPL has been deeply

34

described. Finally some relevant technologies used within VPL are explained

(programming languages, XML-RPC, and Xinetd) as well.

A quickly review of paid-for and open source LMSs has been shown to have

awareness of them. But mainly a description of Moodle is done because it is related to a

non functional requirement for the final solution.

This chapter is very important inside this work. Its main contributions include: the

identification of the specific problem treated in this work, which is the lack of a model

to grade programming assignments, and the criteria’s characterization as element to

help to think in the architecture to solve the problem.

Some of the contributions described in this chapter have been validated through the

publication of a scientific article. This article has as title: Programming Assignments

Automatic Grading: Review of Tools and Implementations (Caiza et al. 2013). It has

been accepted in the 7th International Technology, Education and Development

Conference. The complete document can be seen as an annex.

This chapter helps to get into the context of the problem, as well as to define how

much of this project's requirements have been already fulfilled by previous works.

Additionally, it helps to define new requirements, which will be analyzed in the next

chapter. Finally it gives the introduction of some technologies, which will be used in

the next chapters of analysis and architecture design.

35

3 Problem analysis

The previous chapter provided a context for the problems described in the

introduction. They are:

• A general problem, this is the necessity of using a tool to grade automatically

programming assignments. It is associated to a final goal, which is to

implement a tool for automatic grading of programming assignments. The

project SEAPP at UPM aims at achieving this goal.

• A specific problem, this is the lack of a common model to grade

programming assignments. It is associated to the general goal of this work

(expressed in the first chapter). The goal is to propose and validate a new

architecture inside a grading process (which aims to an automatic grading of

programming assignments) , which will support many ways of grading.

Considering both problems and following a waterfall software development

process, this chapter makes an analysis of these problems to give an approach to fulfill

with all the requirements set, and to define a scope and propose a solution.

As a first step, the main actors in the system will be defined. Next, a use case

diagram is shown to have a perspective of the system’s context. Then, there will be

given a complete set of requirements including functional and non functional.

Considering the requirements and the existent tools, the most suitable tool will be

chosen to be used as a base for further developments (it could be helpful to save

implementation time). All these elements will be useful in finding out the most

adequate solution to reach the final goal, which will solve the general problem. Finally,

the scope to solve the specific problem will be defined. This definition implies selecting

a set of requirements to be satisfied.

3.1 Actors

Three actors have been identified: students, teaching staff and administrators. Every

actor has its own interests and specific actions inside the system.

The student (S) is interested in sending his programming assignment solution. He

is interested in getting back its correspondent grade and feedback as quickly as

possible. He gets some advantages of using the tool including the improvement of his

skills through receiving a good and quick feedback, the possibility of getting better

grades in resubmissions, and the possibility of counting with a better tracing about his

improvement.

36

The teaching staff (TS) includes professors and teaching assistants. They are

interested in this kind of tool to provide students with quick feedback

(recommendations, comments, errors’ explanations and so on). Additionally they can

optimize their time to use it in more focused tasks inside the programming learning.

Their main tasks include management of assignments and configuration of the grading

process. Their responsibilities also include the analysis of reports to see the

improvement level of students.

The administrator (A) is in charge of the system’s settings management to keep it

working. These parameters can include the management of programs and tools

required by the grading process.

3.2 Defining the context

A use case diagram allows a high level representation of the system (Cockburn

2001). It permits to think about the context and to define the limits of the system.

To get a better understanding of these diagrams, making a previous explanation

about the meaning of some terms used inside them is necessary:

• Assignment refers to a programming problem assigned to students. It can

include homework, lab exercises and so on.

• Submission refers to a set of files, which are the solution for the given

problem. An assignment can be associated with more than one submission.

• Metric is any type of measure done on a software piece. A metric is

quantifiable. The rate of test cases passed by a submission, and the number

of tags and comments found on a source code are examples of metrics.

• Grading-submodule is an artifact used in this project, which allows

evaluating a submission considering one or more metrics for a given

programming language. So every grading-submodule has always at least

one metric associated. As every criterion can include a set of metrics (refer to

the metrics’ characterization in the state of the art chapter), every grading-

submodule can be related to a given criteria as well. Every grading-

submodule has implicitly associated a main action, which will be performed

on the source code to evaluate. Then, the grading-submodule will have an

associated program to perform this main action. Additionally, every

grading-submodule can require a list of parameters to be used by the

associated program.

Figure 5 shows a use case diagram, which represents the main operations that actors

will require to the system. This representation allows having an idea of which modules

the system could have. To maintain traceability, the use cases have a unique code. The

37

prefix of every code is UC, which means Use Case. After the prefix there is a sequenced

number.

To get a better understanding of use cases expressed in Figure 5. It is necessary to

make an explanation. Thus:

• Manage assignments (UC01). – The teaching staff shall perform CRUD

(Create – Read – Update - Delete) actions on assignments.

Figure 5. High-level use case diagram

• Manage grading process (UC02). – The teaching staff shall manage the

grading process through tasks of configuration and starting the grading

process. The teaching staff shall configure the grading process associated to

an assignment. The configuration includes choosing different grading-

submodules and sorting them in any order, and setting values for

parameters associated to every grading-submodule. Additionally, the

teaching staff could start the grading process.

• Access to performance reports (UC03). – The teaching staff shall access to

reports about performance and improvement of the students.

38

• Identify plagiarism (UC04). – The teaching staff shall identify plagiarism

cases. It will be done comparing current students’ assignments and

assignments from past courses.

• Send assignment (UC05). – The student will send the assignment’s solution

and will receive feedback and a grade for that submission. In the

background, the grading process will be performed.

• Manage programming languages (UC06). – The administrator shall perform

CRUD actions on supported programming languages. These actions are

focused to maintain general information about a given language (id, name,

description, version, and so on). This functionality will be used to tag or to

associate a programming language with a given grading-submodule. Then

this tag can help to sort and filter grading-submodules when configuring a

process or when getting reports.

• Manage grading-submodules (UC07). – The administrator shall perform

CRUD actions on grading-submodules. These actions have associated CRUD

actions on required parameters for every grading-submodule as well.

• Manage logs (UC08). – The administrator will manage logs about the system

and especially about the grading process. This management includes

configuration about parameters to keep logs working, and reports in

different levels of detail.

The previous diagram is helpful because it allows thinking about possible modules

inside the system; but it is necessary to detail every use case. It is going to be done

through a set of requirements in the next section.

3.3 Requirements

It is necessary to go from a higher level, which is the use case diagram shown

before, to a lower level of an ample set of requirements. This will permit having a

feature-centered perspective of the system. Then, it will be possible to know which of

the tools considered in the systematic literature review fulfill the requirements. Next a

set of functional and non functional requirements is presented.

3.3.1 Functional requirements

Functional requirements express what the system has to do and they are related

with the use case diagram showed before. Every requirement is traceable to a use case.

To provide of a unique identification they have their own code. Every code has a prefix

(FR - Functional requirement) and a sequenced number. Additionally the description

of the requirement is given. Table 5 shows functional requirements associated to every

actor. All these requirements have been specified taking into account necessities and

future paths reported in previous related works (Refer to the systematic review).

39

Table 5. Functional requirements

Cod. UC Cod. Req. Requirement Actor

UC01 FR01 The system shall provide a list of the existent assignments. TS

UC01 FR02 The system shall provide the complete information of an assignment. TS
UC01 FR03 The system shall allow creating a new assignment. TS

UC01 FR04
The system shall allow modifying assignment's attributes but for those which
are part of the unique identification.

TS

UC01 FR05 The system shall allow deleting an assignment. TS

UC02 FR06
The system shall allow the teaching staff to add new grading-submodules
inside the grading process.

TS

UC02 FR07
The system shall allow the teaching staff to set parameter's values for every
grading-submodule inside the grading process.

TS

UC02 FR08
The system shall be able to let the teaching staff sort the grading-submodules in
any order inside the grading-process.

TS

UC02 FR09
The system shall be able to let the teaching staff to start manually the grading-
process on at least one submission.

TS

UC02 FR10 The system shall be able to let the teaching staff grade manually a submission. TS

UC02 FR11
The system shall allow the teaching staff to edit manually the feedback and
grade.

TS

UC03 FR12 The system shall provide a submissions' historical report. TS

UC03 FR13
The system shall provide all the information associated to a submission done
previously.

TS

UC03 FR14
The system shall provide statistical reports per assignment(s) and per
student(s).

TS

UC04 FR15
The system shall be able to let the teaching staff start the plagiarism detection
process.

TS

UC04 FR16 The system shall provide reports about plagiarism cases detected. TS

UC05 FR17 The system shall provide a list of available assignments for students. S

UC05 FR18 The system shall provide a complete description of the student's assignment. S

UC05 FR19
The system shall be able to let the student upload and send to grading all files
data required by the assignment.

S

UC05 FR20 The system shall provide the grade and feedback to the student. S

UC06 FR21 The system shall provide a list of supported programming languages. A

UC06 FR22
The system shall provide the complete information about a supported
programming language.

A

UC06 FR23 The system shall allow adding a new supported programming language. A

UC06 FR24
The system shall allow modifying attributes of the supported programming
language but for those which are part of the unique identification.

A

UC06 FR25 The system shall allow deleting a supported programming language. A

UC07 FR26 The system shall provide a list of existent grading-submodules. A

UC07 FR27 The system shall provide the complete information about a grading-submodule. A

UC07 FR28 The system shall allow creating a new grading-submodule. A

UC07 FR29
The system shall allow modifying attributes of a grading-submodule but for
those which are part of the unique identification.

A

UC07 FR30 The system shall allow deleting a grading-submodule. A

UC07 FR31
The system shall be able to let the administrator add new parameters to a
grading-submodule.

A

UC07 FR32
The system shall be able to let the administrator modify parameters of a
grading-submodule.

A

UC08 FR33
The system shall be able to let the administrator set the grading process logs'
severity required.

A

UC08 FR34 The system shall provide a report of grading process logs sorted by severity. A

40

3.3.2 Non functional requirements

There is a set of non functional requirements for this project and a use case diagram

cannot show them. So it is necessary to define a way to get this kind of requirements.

Considering that ETSIT (Escuela Técnica Superior de Ingenieros de

Telecomunicación) has in charge the SEAPP project and that this centre would be the

test environment, it is possible to define a set of non functional requirements. These

requirements will be defined considering the current technological infrastructure and

trying to have minimum effects on that.

Table 6 shows a set of non functional requirements. They will help to choose a tool

from the set given in the systematic review. The selected tool will be the base to

develop the solution to validate the new architecture.

Table 6. Non functional requirements

Req. Code Description

NFR01 The system shall be able to integrate with Moodle. Moodle is the current LMS used in ETSIT.

NFR02
The system shall be able to grade Java programs. It because Java is the programming language
taught at ETSIT.

NFR03
The system shall be able to grade source code written in other programming languages. For
example JavaScript.

NFR04 The system shall allow adding any metric inside the grading process.

NFR05 The system shall allow sorting grading metrics in any arrangement.

NFR06 The system shall guarantee the normal working of the current infrastructure.

NFR07 The system shall be able to provide an isolated environment to evaluate the source code.

3.4 Solution approach

Considering the whole set of requirements expressed before, considering a solution

approach is possible; this approach allows fulfilling all of them.

Functional requirements can help to think about the necessary modules inside the

system. There are 9 modules in total and most of them are focused on management. All

of them are important but the automatic grading module is highlighted. Figure 6

shows all modules defined. They are:

• Supported programming languages management. - This module will allow

performing CRUD actions on any supported programming language. As it

has been said before, a supported programming language will be used to tag

a given grading-submodule. Certainly, this tag allows associating the

grading-submodule to a programming language.

• Grading-submodules management. - This module will allow performing

CRUD actions on any grading-submodule. Every grading-submodule will be

related to at least one grading metric and to a supported programming

language (taking into account the previous module). This module will

41

provide of modularity and extensibility regards to grading-submodules.

Most modularity will be reached when the relationship grading-submodule

– metrics is one-to-one. A relationship grading-submodule – criterion is

useful as well.

• Assignments management. - This module will allow performing CRUD

actions on any assignment.

• Grading process management. This module will allow configuring the

grading process for a given assignment. The grading process will have at

least one grading-submodule and there won’t be a maximum defined. It will

allow choosing any grading-submodule to be included inside the grading

process. The chosen grading-submodules will be arranged in any order.

Additionally, this module will allow setting parameters needed by grading-

submodules.

• Assignments submission. This module allows uploading and sending any

file required by the assignment. The set of files are named as a submission.

Additionally this module triggers the grading process.

• Automatic grading module. This module is the most important considering

the goal of the system. It goes through a set of stages to evaluate the

submission done and returns a grade and feedback.

• Plagiarism detection. The goal of this module is precisely to detect any copy

among students. There is a good research about this field and there are some

already built tools.

Figure 6. Solution approach

• Reports. This module includes many kinds of reports. The goal here is to do

a trace on the students’ skills improvement. Additionally reports can help to

study the behavior of students while working in programming assignments.

42

• Logs management. This module allows tracing events when an incident

happens inside the grading process.

The separation of the automatic grading module from the others is not only due to

its importance. It is considering the non functional requirements as well. The non

functional requirements NFR01, NFR06 and NFR07 are very important. Regarding the

first one, ETSIT is current working with Moodle LMS and its interest is to avoid the use

of many gates to enter the programming learning environment. It implies guaranteeing

integration between Moodle and the automatic grading tool. Regarding the other two

cases, ETSIT has a current infrastructure working and it has to be maintained in the

same way. Then, to prevent and maintain this infrastructure safe, it is necessary to

isolate the grading process module. Building the new module in another server is a

good option. The use of services can maintain the integration with Moodle and even to

integrate with other modules or systems.

The other non functional requirements have been taken into account as well. They

are related with some modules defined. Thus, NFR02 and NFR03 related with the

module for supported programming languages management and with grading-

submodules management (because they are associated to a given programming

language). NFR04 and NFR05 are considered by modules grading-submodule

management and grading-process management respectively.

3.5 Existent tools’ suitability

The systematic literature review carried out in the previous chapter allowed

identifying tools that could fulfill with the specified requirements. Thus, in the best

case a tool would fulfill with all the requirements and only a stage of deployment

would be required. Most often, there would be a tool which fulfills with some, many or

most of the requirements. In any case it implies saving implementation time.

It is desirable that a tool fulfills as many requirements as possible. So the mature

tools, detailed in the systematic review at Table 1 have been taken because they have

more features than the younger tools. To take an already built tool and work on it, its

license is important. So it will be the first filter. It is necessary a license which allows

accessing the complete code to make changes on this. Implicitly, it is necessary to know

if the access to download to the code is possible as well.

Additionally to license and availability, non functional requirements have been

considered as comparison parameters. The non functional requirement NFR04 related

to grading-submodules extensibility has been adapted to extensibility of grading

metrics, which means the support for new metrics for grading. This is necessary to

have a fair comparison because grading-submodule is a concept given just in this

43

work. Other parameter to make the comparison refers to modular grading metrics. Due

to inexistence of grading-submodule, it is necessary to know if there is a way to

provide modularity regards grading metrics (plugin or a given artifact related to a

metric could be a possibility). Finally a plagiarism control is a quite important feature,

this could be itself a module, and therefore it has been considered as a comparison

parameter as well.

Table 7 shows that there is not an already built tool that fulfills with the whole set of

requirements. But surely taking one of them to use as base and save implementation

time is possible.

Table 7. Automatic grading tools suitability

CouseMarker Marmoset WebCat VPL

Tool by Magdeburg

University

License
-

Apache 2.0

GNU

Affero

GNU

GPL
-

Availability X ✔

33 ✔

34 ✔

35 -

Moodle Integration X X X ✔ ✔

Support for Java

programs
✔ ✔ ✔ ✔ ✔

Extensibility for

programming

languages

X ✔ ✔ X ✔

Modular grading

metrics
✔ - ✔ X -

Extensibility for

grading metrics
X X ✔ ✔ X

Flexibility in the

grading process
- X - - ✔

Safe evaluation

environment
X ✔ X ✔ ✔

Plagiarism detection ✔ - - ✔ -

Considering most important parameters, explained previously in this topic, which

are: license, availability, and Moodle integration; the most suitable tool is VPL.

Additionally VPL fulfills with many of the established parameters and has important

features as it can be seen in the state of the art chapter. After the selection of the tool,

knowing how much the tool fulfills the whole set of requirements is appropriate. Table

8 allows determining that. It is necessary to define the scope of this work.

33 https://code.google.com/p/marmoset/source/checkout
34 http://sourceforge.net/projects/web-cat/files/
35 http://vpl.dis.ulpgc.es/index.php/es/descargas

44

Table 8. VPL’s fulfillment of all requirements

Cod.
Req.

Requirement VPL

FR01 The system shall provide a list of the existent assignments. ✔

FR02 The system shall provide the complete information of an assignment. ✔
FR03 The system shall allow creating a new assignment. ✔

FR04
The system shall allow modifying assignment's attributes but for those which are part of the
unique identification.

✔

FR05 The system shall allow deleting an assignment. ✔

FR06
The system shall allow the teaching staff to add new grading-submodules inside the grading
process.

X

FR07
The system shall allow the teaching staff to set parameter's values for every grading-
submodule inside the grading process.

X

FR08
The system shall be able to let the teaching staff sort the grading-submodules in any order
inside the grading-process.

X

FR09
The system shall be able to let the teaching staff to start manually the grading-process on at
least one submission.

✔

FR10 The system shall be able to let the teaching staff grade manually a submission. ✔

FR11 The system shall allow the teaching staff to edit manually the feedback and grade. ✔

FR12 The system shall provide a submissions' historical report. ✔

FR13 The system shall provide all the information associated to a submission done previously. ✔

FR14 The system shall provide statistical reports per assignment(s) and per student(s). X

FR15 The system shall be able to let the teaching staff start the plagiarism detection process. ✔

FR16 The system shall provide reports about plagiarism cases detected. ✔

FR17 The system shall provide a list of available assignments for students. ✔

FR18 The system shall provide a complete description of the student's assignment. ✔

FR19
The system shall be able to let the student upload and send to grading all files data required
by the assignment.

✔

FR20 The system shall provide the grade and feedback to the student. ✔
FR21 The system shall provide a list of supported programming languages. X

FR22 The system shall provide the complete information about a supp. programming language. X

FR23 The system shall allow adding a new supported programming language. X

FR24
The system shall allow modifying attributes of the supported programming language but for
those which are part of the unique identification.

X

FR25 The system shall allow deleting a supported programming language. X

FR26 The system shall provide a list of existent grading-submodules. X

FR27 The system shall provide the complete information about a grading-submodule. X

FR28 The system shall allow creating a new grading-submodule. X

FR29 The system shall allow modifying attributes of a grading-submodule. X

FR30 The system shall allow deleting a grading-submodule. X

FR31 The system shall be able to let the administrator add new parameters to a grading-submodule. X

FR32 The system shall be able to let the administrator modify parameters of a grading-submodule. X

FR33 The system shall be able to let the administrator set the grading process logs' severity. X

FR34 The system shall provide a report of grading process logs sorted by severity. X

NFR01 The system shall be able to integrate with Moodle. ✔

NFR02 The system shall be able to grade Java programs ✔

NFR03 The system shall be able to grade source code written in any programming language. X

NFR04 The system shall allow adding any metric inside the grading process. ✔

NFR05 The system shall allow sorting grading metrics in any arrangement. ✔

NFR06 The system shall guarantee the normal working of the current infrastructure. ✔

NFR07 The system shall be able to provide an isolated environment to evaluate the source code. ✔

45

Table 8 shows that VPL does not fulfill with all the requirements (functional and

non functional). The requirements not fulfilled refer to:

• Management of grading-submodules (FR26 – FR32). – VPL does not work

with artifacts similar to grading-submodules. It means VPL lacks an artifact

that is directly related to a grading metric.

• Management of grading process (FR06, FR07, FR08). – VPL allows the

teaching staff to write a script to evaluate a submission in a customized way.

This script could consider any metric or a set of metrics. But VPL does not

work with artifacts to support a modular and flexible grading process. The

use of grading-submodules would require of teaching staff just to select and

configure the required artifacts inside a grading process without any coding

requirement.

• Full statistical reports (FR14). – Currently VPL supports informs about

number of submissions and working periods but it lacks more detailed and

useful information about submissions to allow tracing the students’

improvement. This information could include number of submissions, grade

obtained in every submission, time among submissions, and so on.

Additionally it could be possible to see the evolution of these factors as long

as new assignments are sent.

• Management of logs (FR33, FR34). – Currently VPL provides of logs about

which action was done by a user inside the Moodle user interface (visit a

page or start a process) but not about events happened inside the grading

process.

• Programming language independence (NFR03). – VPL supports a defined

set of programming languages for the source code to be graded. But the

inclusion of new supported programming languages is limited to new

updates of the tool. Then independence or the possibility to extend

supported programming languages as the user wants is still required.

• Management of supported programming languages (FR21 – FR25). –

Considering the lack of programming language independence in VPL there

is a lack of a user interface to manage the supported programming

languages inside the system. Additionally, according to the requirements

given earlier, this management will allow relating grading-submodules to a

supported programming language. This will be helpful to filter or classify

grading-submodules.

It is worth mentioning that although VPL supports requirements NFR04 and

NFR05, it is not optimal. This is because the teaching staff has to write a script to

evaluate an assignment considering one or more metrics. In the worst case, this task

46

would be repeated in every assignment if the method of grading changes. Then these

requirements can be considered to be improved.

3.6 Defining the scope

Considering the goal of this work, which is to provide an architecture to support

many ways of grading, some of the not fulfilled requirements will be treated. This

subset of requirements is directly related to the automatic grading process considering

grading-submodules. Table 9 shows them.

Table 9. Requirements considered for this work

Req. Code Requirement

FR06
The system shall allow the teaching staff to add new grading-submodules inside the
grading process.

FR07
The system shall allow the teaching staff to set parameter's values for every grading-
submodule inside the grading process.

FR08
The system shall be able to let the teaching staff sort the grading-submodules in any order
inside the grading-process.

FR26 The system shall provide a list of existent grading-submodules.

FR27 The system shall provide the complete information about a grading-submodule.

FR28 The system shall allow creating a new grading-submodule.

FR29 The system shall allow modifying attributes of a grading-submodule.

FR30 The system shall allow deleting a grading-submodule.

FR31
The system shall be able to let the administrator add new parameters to a grading-
submodule.

FR32
The system shall be able to let the administrator modify parameters of a grading-
submodule.

NFR03 The system shall be able to grade source code written in any programming language.

NFR04 The system shall allow adding any metric inside the grading process.

NFR05 The system shall allow sorting grading metrics in any arrangement.

It is worth saying that some requirements are implicitly related and therefore when

solving one, another one will be solved as well. Then, the capability of adding any

metric inside the grading process (requirement NFR04) will be solved when

implementing the addition and configuration of any grading-submodule inside the

grading process (requirements FR06 and FR07). To fulfill FR06 and FR07 requirements

the implementation of grading-submodule management will be necessary

(requirements FR26 – FR32). Likewise the capability of sorting grading metrics inside

the grading process in any arrangement (requirement NFR05) will be solved when

implementing sort of grading-submodules (requirement FR08). The independence of

any programming language (requirement NFR03) could be obtained if the grading-

submodule is defined as an agnostic artifact about the language. Then, any

programming language could be supported.

47

3.7 The solution for the defined scope

Taking into account the context, the solution is to implement an automatic grading

process considering grading-submodules. This solution will have as features

modularity, extensibility, and flexibility in grading criteria and metrics inside a

grading process. This solution will help to face the open research field given in the

systematic review, which is the lack of a common model to grade. To implement the

solution VPL has been selected as base tool to take advantage of most of its features

and avoid “reinventing the wheel”. The new features to implement and add to current

VPL tool are:

• Management of grading-submodules.

• Management and configuration of grading process.

• Automatic grading process considering grading-submodules.

Figure 1 in the chapter 2 showed VPL’s architecture. This considers the use of two

subsystems: Moodle and Jail (a sandbox environment). Each of them is deployed in a

different server. Then, the solution will have to consider these both subsystems inside

VPL that will be called as VPL-Moodle and VPL-Jail subsystems. It is worth

highlighting that these subsystems belong to VPL and they are not inside the proposed

architecture. Figure 7 shows a block diagram, which defines modules already built in

VPL and new modules to implement as part of the solution (Grading process

management module and grading process module).

Figure 7. VPL-Moodle and VPL-Jail subsystems

Moodle data
directory

Moodle database

Similarity Grading process
management

moduleJail

Moodle

VPL-Moodle subsystem
(plugin)

Grading process module
(Jail environment)

Lib directory

VPL-Jail subsystem

Jail server

48

3.7.1 Analysis of the VPL-Moodle subsystem

The VPL plugin inside the Moodle server contains all the front-end of the VPL

system. This has two highlighted modules (it can be seen in the source code): similarity,

to detect plagiarism cases, and jail to communicate with the VPL-Jail subsystem and to

store scripts which will be sent to be executed in the VPL-Jail subsystem as well.

Then, it is suitable to define a grading module, which joins up the management of

grading-submodules, the management of the grading process, and means to send data

and start the automatic grading process. The same jail module could be used to send

data.

The management features will be provided through a web-based GUI. Every user

interface will have its correspondent validation of data inputs. Behind them, a

communication with the database and with the directories structure will be required as

well. To send data, it will be necessary to use a program to package and send that

using the XML-RPC protocol (This protocol is currently used by VPL tool). The data

will include the source code files, any additional file required by the grading process

and some information (which will guide the grading process in the Jail).

3.7.2 Analysis of VPL-Jail subsystem

The VPL-Jail subsystem is quite important because inside it, the grading process is

performed. The Jail server, inside the VPL-Jail subsystem, provides its functionality as

a service using xinetd program (refer to VPL’s features in the state of the art chapter). It

receives requests to perform the grading process and sends back the result as response.

Figure 8 shows the complete grading process since the evaluation request is

received until the feedback is sent back as response.

When an evaluation request arrives, the server receives all data required and creates

an isolated environment, the jail. The server places all the required files, needed to

perform the grading process inside the jail environment. Then, the server executes a set

of defined programs in a specific order to execute or evaluate the source code. This set

of programs includes:

• An evaluation script that analyzes if the programming language of the

source code is supported by the tool. If so, it calls the compilation program

else it outputs an error message. Additionally, it monitors if there is a

compilation error or if do not exist a file with test cases. In both cases it

outputs an error message. It writes the execution program.

• A compilation script that compiles all the source code files and identify the

main program.

49

• An execution file that sets up the test environment and perform testing of the

main program against test cases. It outputs the result of this testing.

Figure 8. Grading process inside the VPL–Jail subsystem

50

The Jail server program calls directly the evaluation and the execution scripts. It gets

their outputs and prepares a message to send back as feedback.

 It is worth standing out that by default VPL uses a file of test cases. These cases are

written by the teaching staff in a specific language defined by VPL.

The help of the tool mentions the possibility of using other methods (and other test

cases) to grade assignments. It is through rewriting the evaluation script. The

evaluation script is a Linux shell script which has to generate (mandatory) an execution

file, which has to be another Linux shell script or a binary file. As it can be seen in

Figure 8 this file performs the grading itself. Then, evaluation script and execution file

are the interfaces to reach the integration between VPL and the new grading process. It

has to be considered in the design chapter.

3.8 Chapter summary

This chapter has shown a set of results to describe the scope of this work. They

include the identification of actors, the high level view of the system through a use case

diagram, the definition of functional and non functional requirements, a solution for

the general problem, the search of a suitable tool to be used as base for further

development, the definition of requirements to fulfill in this work and the solution

proposed considering two subsystems, VPL-Moodle and VPL-Jail (subsystems of VPL).

Every actor has its own interest and allowed actions inside the system. Then, a set of

requirements for every one of them has been defined. The requirements include

functional and non functional. Based on them, a set of important parameters has been

defined to compare a set of mature automatic grading tools. The most suitable tool was

VPL. This has some important advantages like its GNU/GPL license, the easy access to

the code, its Moodle integration and its module of plagiarism detection. However VPL

does not fulfill with all the requirements set in this work and it is necessary to add

some new features.

This work will solve a subset of non fulfilled requirements aiming to provide

modularity, extensibility and flexibility to the automatic grading process of

programming assignments. The three following features have been identified to add to

VPL plugin: management of grading-submodules, management of grading process and

the automatic process itself.

All the considerations done in this chapter, the specification of a scope and the

analysis for the VPL-Moodle and the VPL-Jail subsystems are helpful and allow

focusing on the solution to be implemented in this work. Then, the next chapter will

present the design of the new grading process architecture.

51

4 Design

The previous chapter has shown the necessity of implementing additional features

to both subsystems inside VPL. The design of the solution for VPL-Moodle and VPL-

Jail subsystems are presented here. This design will include an abstract architecture

view and different perspectives of the solution. The design aims to define elements and

their functionality, which will be helpful in the implementation stage.

4.1 VPL-Jail subsystem

The VPL-Jail subsystem hosts the jail environment. Inside this jail, the grading

process will be performed. The jail will have all the necessary data before running the

process. Considering this last fact is quite important to understand the proposed

architecture.

4.1.1 Detailed architecture

The proposed architecture aims to provide modularity, extensibility and flexibility

to the grading process through the use of grading-submodules previously defined

(Refer to the analysis chapter).

A layer-based approach will help to get an abstract view of the architecture. To see

the improvement provided by the proposed grading process architecture, the current

process provided by VPL is shown first.

Current VPL’s architecture

Figure 9 shows the current and default architecture in layers of the grading process

in VPL. It is related to Figure 8 described in the analysis chapter (refer there to see

details of the main programs). There, the grade is calculated only considering success

test cases. These test cases are written in a specific language used by VPL.

This way of grading just considers correctness as the grading criterion. So, it is not

possible to talk about modularity, extensibility and flexibility for the grading process

(default configuration).

One important feature of VPL is the possibility of editing the evaluation script and

making a customized grading process. Then VPL can consider more grading criteria

inside the grading process. It can be seen in Figure 10.

52

Figure 9. Default architecture for grading in VPL

Figure 10 depicts an architecture that has the execution program block, which

considers n criteria inside it (every criterion could consider one or more grading

metrics as well). There are two new blocks that are additional files and libraries, which

represent files required to perform the grading process considering new criteria.

Figure 10. Architecture considering many metrics to grade in VPL

In spite of the ability to consider more grading criteria, which implies extensibility,

VPL still lacks modularity and flexibility inside the grading process. This is because all

criteria are mixed and statically arranged in a file script.

Proposed architecture

As it can be seen, it is necessary to define an architecture to support many criteria as

independent from each other as possible. This independence will help to provide the

desired modularity, extensibility and flexibility. Figure 11 shows the proposed

architecture.

53

This architecture considers, as VPL, that all the required files for the grading process

will be inside the jail before starting the process. The three bottom levels are

completely dynamic. The grading-submodules layer provides of modularity,

extensibility and flexibility to the grading process architecture.

It is necessary to make an explanation of every layer. Thus:

• Environment builder. – This layer is composed of two scripts, evaluation

and execution. They are used to maintain compatibility with the VPL system

but their functionality has been changed.

The evaluation script makes any necessary processing on the files set, charset

coding or decoding for instance. More tasks can be defined depending on

needs. Additionally, this script has to generate dynamically the execution

file.

The execution file is generated dynamically. This script exports the necessary

libraries’ paths required by grading-submodules inside the grading process.

Then, it calls the orchestrator program.

Figure 11. Proposed architecture for grading process

• Orchestrator. - This is a program that controls the whole grading process. As

first task, the orchestrator loads information about how to perform the

grading process. The information has to include information about the

submission and the list of grading-submodules, with their parameters, to be

performed.

Based on the list, it calls every grading-submodule associated program. A

mechanism for passing data from the orchestrator to this program and for

54

getting back the execution results has to be established. This mechanism will

depend on the programming language used to write the grading-

submodules associated programs and on the orchestrator’s technology. This

will be treated later, in the class diagram and in the implementation section.

After grading-submodules calls are finished, the orchestrator will process

every grading-submodule results to calculate the final grade and to establish

comments.

Finally, the feedback (grade and comments) will be sent back to the Moodle

server.

• Submission configuration file. - This file contains submission’s metadata

and information to be used by every grading-submodule associated

program, which will be performed inside the grading process. It could be

used to save information about the results of the grading process as well.

The complete description of this file will be shown in the implementation

section.

• Grading-submodule. – It is a new artifact designed for this work and

defined in the analysis chapter. It is associated implicitly to a grading metric

or to a grading criterion, and to a programming language (used to write the

source code to be evaluated). This artifact has an associated program (which

evaluates the source code) that will be executed in the grading process. The

number of grading-submodules and its arrangement inside the grading

process are depending on the assignment.

• Libraries and programs. – It refers to external programs or packages

required by the grading-submodules associated programs.

• Source Files. – It refers to files written and sent by the students in a

submission to accomplish with an assignment.

• Additional or configuration files. - Files defined by the teaching staff and

required by the grading-submodules associated program inside the grading

process, for instance test cases, rules files, etc.

4.1.2 Process perspective

The grading process starts when all the required files are inside the jail and the Jail

server executes the evaluation script. In that moment an ordered process starts. Figure

12 shows the whole grading process. This figure is very similar to the architecture

shown before but it is helpful to get a better understanding about the responsibilities of

the different elements of the proposed architecture in the grading process.

Every grading-submodule is well defined (when it is associated to a one grading-

metric or to a one grading criterion), so it provides of modularity to the grading

process. There is not a limit for the number of grading-submodules used inside the

55

process and they can be added as the teaching staff needs, it implies extensibility. The

grading-submodules can be arranged in any way, so there is flexibility inside the

grading process. The number of grading-submodules inside the process, the order and

how to call them are defined in the configuration file.

Figure 12. Elements and calls inside the grading process

An advantage of the proposed architecture is that evaluation and execution files are

not essential for the well working of the whole architecture. It means that this

architecture can be used by other systems just implementing an interface, which sets

up the environment and calls the orchestrator. But to test this architecture, VPL is

going to be used as base tool. Then, these files will allow maintaining integration with

VPL.

The grading process (VPL-Jail subsystem) showed in Figure 8 has changed. Figure

13 shows the new grading process as a sequence of stages.

Considering Figure 13 it is possible to see that evaluation script and execution file

perform basic tasks. One of them would be sufficient. But it is seen that Jail server

program calls directly these files. So they are needed to guarantee compatibility.

56

The execution file calls the orchestrator and this last takes in charge the grading

process. It calls every grading-submodule associated program (this interaction will be

seen later), calculates the final grade, forms the feedback and prints it.

Figure 13. Grading process inside the VPL-Jail subsystem

4.1.3 Control perspective

There are two elements that take a role of controllers inside the VPL-Jail subsystem

and they are the Jail server and the Orchestrator. The first one is already implemented

57

in the VPL tool and interacts with: an HTTP server to treat the incoming requests, a

RPC parser to interpret the information received through the XML-RPC protocol, the

evaluation script, the execution file, and with a logger (which registers every state

while setting up the jail environment). The second one, the Orchestrator, is very

important considering the new grading process architecture. This interacts with a

parser for the configuration file, with every grading-submodule associated program,

and with a logger tool. The logger tool is necessary to register every state of the whole

grading-process. Figure 14 shows the control perspective.

Figure 14. Controllers in the VPL-Jail subsystem

4.1.4 Objects-oriented design

Considering the last section, we now have a concrete idea about the elements

related inside the grading process and which their roles are. This section aims to give a

more detailed description of every element. The goal is to describe as much as possible

that elements because they will be helpful in the implementation stage.

The oriented objects paradigm focuses in representing real life objects. An objects-

oriented design provides of features like modularity and encapsulation, extensibility

and reusability (Bellas). Two of these features are common to those aimed in the

proposed architecture. Then, the objects-oriented approach is a suitable choice to

design.

58

Orchestrator inclusion

Before going on to define required objects, it is worth mentioning that the

orchestrator itself could be a tool. Its function is controlling and orchestrating the

process, calling a set of grading-submodules, performing calculation and outputting

the feedback. Precisely these functionalities can be seen as tasks inside a process. Then,

there are some tools already built, which are designed to work with this kind of

processes and they could be a good choice to avoid an implementation. These tools

include: Apache Ant, Maven, Gradle, and GNU make. They have been reviewed in the

state of the art chapter.

Every tool has a set of very powerful features and they mostly aim to build, deploy

or install projects and applications. Even though these are not the goal of the grading

process, some of these tools mention as feature the ability to support any process that

can be represented as a sequence of tasks.

Regarding Apache Ant, it supports any programming language, has a set of already

defined useful tasks, and supports the addition of new of them as well. Just this last

feature would be helpful for the purpose of adding more grading-submodules as the

teaching staff needs. To add a new task it is necessary to code a Java program

associated and then to define and register this task using a XML format. It implies an

extra step which is the registration; ideally the user should be avoided doing extra

steps to create the new task. The process is described in a XML configuration file, but

when the process starts there is not a communication between the orchestrator and the

tasks, and then to save the task’s results it would be necessary another external file.

Regarding Maven, it controls dependencies inside Java projects. It has a set of

already defined tasks but supports the definition of new of them. The process uses a

XML configuration file as well. The only support for Java projects would be a great

problem but it can be solved by implementing a wrapper in the grading-submodule.

The issue with this tool is, as with Apache Ant, the necessity of and additional

registration stage of the task and the use of an external file to save results.

Regarding Gradle, this works with Java, Groovy, OSGi, and Scala projects and has

the possibility of adding new tasks to a set already defined. The language support

would be solved with a wrapper as well. The definition of new tasks will imply only

writing a script. The process is controlled by a script written in Groovy. It could be a

problem; maybe having a XML representation to control the process would be better

and easier.

GNU make, has a set of good features, which include: independence of

programming languages and every task can be defined with direct calls in the console.

59

There are some issues, which include: the loss of control in error messages, the

stopping of the process when there is a problem in one task, the makefile has to be

carefully generated (a blank space makes difference), and it would use an external file

to save results as well.

At the end, considering the issues of the analyzed tools, it has been decided to build

an orchestrator. This orchestrator will have as features: the use of a configuration file

to define the process, support for new tasks inside the process (grading-submodules),

communication with every grading-submodule while performing the grading-process,

avoidance of external and additional files to save results, and the ability to continue

with the process in spite of a failure in one task.

Objects’ identification

The third and fourth layers of the proposed architecture shown in Figure 11 will

require a complete implementation stage. Then, these layers are the place to start

identifying objects, which could be considered to be abstracted as classes later to be

depicted in a diagram. Thus in a first sight the next objects can be considered:

• Orchestrator, the object that controls the whole grading process. Its

functionality has been described in the proposed architecture section.

• Configuration file, the object that has the complete information to perform

the whole grading process on a student submission. This will include

general information about the submission (final grade, submission

identification, and so on) and about every grading-submodule to be

performed in the grading process.

• Grading-submodule associated program, this is a program associated to the

grading-submodule artifact. This program will act as a wrapper to support

the evaluation of any source code written in any programming language.

• Logger, this object will register every event inside the grading-process in a

log file.

It is necessary to make a deeper analysis of some of the identified objects.

Regarding grading-submodule associated program. There will be as many of them

as grading-submodule were configured inside the grading process. So, they will be

added as the teaching staff needs. It is not possible to define all grading-submodule

associated programs that will be in the grading process. Then, it is better to define an

object that will act as an ‘intermediary’ between the orchestrator and any grading-

submodule associated program created.

60

Regarding logger, there are already implemented tools of this kind for many

programming languages. Even though the programming language is not yet selected,

it is very probable that the manual implementation of a logger will not be necessary.

Finally, there have been identified three objects, which will be depicted in the class

diagram: the orchestrator, the configuration file, and the grading-submodule

associated program (acting as an ‘intermediary’).

Class diagram

Having the objects defined, it is possible to make an abstraction of them to make a

formal representation in an UML (Unified Modeling Language) class diagram. This is

shown in Figure 15.

Figure 15. Class diagram for orchestrator and grading-submodules

61

It is necessary to make an explanation about Figure 15 to get a better understanding

of the diagram.

The SubmissionConf and the GradingSubmoduleConf classes have been abstracted

from the configuration file object. The first one includes information about the whole

submission and will be used by the orchestrator to start the grading process. The

second one represents information to be used for every grading-submodule associated

program. A review of the configuration file structure will be helpful to understand this

couple of classes (This structure will be shown in the implementation section in the

implementation chapter).

The GradingSubmoduleProgram class has been abstracted from the grading-

submodule associated program object and has been defined as abstract because it acts

as ‘intermediary’ between the orchestrator and any grading-submodule associated

program that the teaching staff or administrator will add. This has been defined as an

abstract class instead of interface because it counts with already defined operations.

This class has as attribute an instance of GradingSubmoduleConf, which will be used to

receive information from the orchestrator. Then it is required that the constructor

receives an instance of GradingSubmoduleConf. Additionally, this class forces to every

subclass to implement the run() abstract operation. This operation should define: how

to evaluate a source code (sent by the student) considering a given criterion, how the

grade will be calculated and how the feedback will be composed.

The AnyGradingSubmoduleProgram class has been depicted to represent any grading-

submodule associated program added by the administrator or by the teaching staff that

will be considered inside the grading process. It extends the GradingSubmoduleProgram

class and therefore has to implement the run() operation.

The orchestrator requires of an instance of SubmissionConf because it has all the

information about the submission. To fill any data inside this instance it is necessary to

establish the name of the real configuration file; so this is received by the constructor.

The Orchestrator’s operations are quite interesting and they include:

• Loading the data inside the instance of SubmissionConf. For this process it is

required to know the name of the configuration file, which will be mapped.

• Orchestrating the process. It refers to iterate the list of GradingSubmoduleConf

inside the GradingSubmissionConf to operate sequentially every grading-

submodule. In an iteration, the operation to create an instance of

AnyGradingSubmoduleProgram and to invoke the run operation inside that

will be called.

62

• Creating dynamically an instance of AnyGradingSubmoduleProgram. When

performing this operation, an instance of GradingSubmoduleConf (It is

obtained in a given iteration of the list inside the GradingSubmissionConf) will

be used as creation’s argument. This operation will return the instance of

AnyGradingSubmoduleProgram.

• Invoking to the run() operation defined inside an instance

AnyGradingSubmoduleProgram. After this invocation, the instance of

GradingSubmoduleConf passed as argument will have all the resultant

information of the evaluation considering the criterion associated implicitly

to the grading-submodule.

• A final processing. Considering that the list of GradingSubmoduleConf inside

the GradingSubmissionConf is already updated and contains all the results of

the grading process. The list is processed again to calculate the final grade, to

collect the individual comments and to establish a general comment of the

whole process.

• Outputting the response. The general comment, the detailed comments and

the final grade are output in a format to be recognized as response feedback

by the Jail server.

Considering that the architecture will be validated through some study cases it is

necessary to define a set of GradingSubmoduleProgram subclasses. Then, Figure 16

includes an extension for the class diagram shown previously.

The extended class diagram includes four subclasses extended from

GradingSubmoduleProgram. These new classes are oriented to check the structure of a set

of files (CheckGradingSubmodule), to compile a set of source code files

(CompilationGradingSubmodule), to test a set of source code files against test cases

(TestGradingSubmodule), and to evaluate the style of a source code file

(StyleGradingSubmodule). Their functionality will be expressed in the run() operation

and it will be explained in the implementation stage.

While designing these new classes, the necessity of a class which allows executing

system commands has appeared. For example, inside the run() operation in

CompilationGradingSubmodule, a compiler has to be called. Then, the CommandExecutor

class has been defined, which basically has a command attribute and an operation to

execute the command. The complete implications will be seen in the implementation

stage.

To make possible the access to this class since any GradingSubmoduleProgram

subclass, a new attribute in the GradingSubmoduleProgram abstract class has been

added. This new attribute is an instance CommandExecutor class. Additionally in the

63

same abstract class there have been defined more operations, which aim to provide of a

quick access to execute system commands from the subclasses. These operations

include: execution of a string command, getting the execution results through the

standard output and getting messages from the standard error.

Figure 16. Extended class diagram with GradingSubmoduleProgram subclases

Classes packages

The previously defined classes can be arranged in a package diagram. In spite of the

size of the project, the intention is to get a separation among classes based on

functionality and semantics. Additionally it will help to have an order in the

implementation stage. Ruiz et al in (Ruiz et al.) give some considerations to sort

elements inside a package, these include: having strong conceptual relations, and being

related through inheritance. Then there have been established some packages, which

are depicted in Figure 17.

64

Figure 17 only considers new classes defined for this work. As it has been said

before, a Logger class probably does already exist and this has not been depicted.

The SubmissionConf and GradingSubmoduleConf are related through a composition, so

they go inside the same package called Parsing. Grading Submodules package stores the

GradingSubmoduleProgram class and all its subclasses because they are related through

inheritance. Additionally the packages have been depicted to see their relation with

every layer of the proposed architecture.

Figure 17. Package diagram of the orchestrator and grading-submodules levels

Finally, it is possible to see that there are two parts inside this solution, one that will

be static after its implementation and another one that will be changing depending on

more classes’ addition. The first group is composed by Orchestration, Parsing and

System packages, and will shape the core of the solution. The second group will be

shaped by the Grading Submodules package, which initially only will have the

GradingSubmoduleProgram abstract class but eventually will grew when adding new

grading-submodule associated programs.

Interactions inside the grading process

The role of every element in the grading process inside the jail has been defined and

it helps to highlight the importance of each of them. It is worth noting that there is

more interaction among some elements; they are the Orchestrator and

AnyGradingSubmoduleProgram. This interaction increases as more grading-submodule

65

associated programs are considered inside the grading process. Additionally, in cases

when a system’s command execution is required, the interaction among these elements

increases as well.

Then, the sequence diagram shown in Figure 18 is helpful to understand in a better

way the interactions. This figure only includes objects and functions performed.

Figure 18. Grading process interactions

There are some interesting facts in this representation:

• Even though the execution file calls the orchestrator, the grading process is

started by an instance of the Jail server. The execution file is just an

intermediary, which is not an object, and has been maintained to keep the

integration with VPL. Additionally the execution file does not care about the

response; this last is only used by the Jail server. Finally, the execution file

has not been represented.

• The SubmissionConf and GradingSubmoduleConf classes have not been

represented because they only represent the configuration file (parsing files).

They do not perform any action as well.

• As it has been said before, it is very probable that system calls will be

performed inside instances of AnyGradingSubmoduleProgram. Then it is

necessary to interact with an object (instance of CommandExecutor) to execute

66

commands in the console system. The number of calls to execute a command

is not determined but it could be zero or more.

• There is a loop started in the Orchestrator instance. This loop makes calls to

run() operation inside every AnyGradingSubmoduleProgram.

• The Orchestrator instance makes calls to operations fillSubmissionConf() and

finalProcessing().

• Finally, the Jail server starts the process and waits to get the result with the

grade and comments to send the feedback.

The new architecture for the grading process has been given. This could be tested

without having a formal user interface. The only requirements are to have all the

required files inside the jail, and that a program exports the libraries’ paths and starts

the process by calling a Orchestrator instance.

4.2 VPL-Moodle subsystem

The analysis chapter determined the necessity of implementing new features inside

the VPL Moodle’s plugin, they include: the grading-submodules management, the

grading process management and a mean to communicate with the VPL-Jail

subsystem; all of them implemented in a new VPL’s module called Grading process

management module.

To use the grading module, grading-submodules CRUD actions have to be carried

out. Then, after the creation of a new VPL activity, the grading process management

can be performed. This management includes: the addition or deletion of grading-

submodules in the grading process, the sorting of them in any order, and the values

assignation to any parameter required by the grading-submodules. When a submission

related to a VPL activity is done, the configuration of the grading process is reviewed

and then all the necessary data (student’s source code files, additional files required by

the grading-submodules associated programs) is collected and sent to the VPL-Jail

subsystem.

Every new feature will be treated here to provide some design implications, which

will make easier the implementation of that features in the next chapter. It is necessary

to establish the data model before implementing these new features as well.

4.2.1 Data Model

Moodle’s data is distributed in the Moodle’s database and in the Moodle’s data

directory. The second one saves files in a directory structure to avoid an overloading

in the database. Other kind of information is saved in the Moodle’s database.

VPL is a Moodle’s activity plugin and adds some tables to the Moodle’s database.

Likewise Moodle, VPL uses a directory structure to save files related to a VPL activity.

67

The new grading module inside VPL will add some new tables to the Moodle’s

database as well. They will be defined later in this section. Additionally, considering

that a grading-submodule has a program associated and this could require of

additional files to work in a right way, it will be necessary to define a directory

structure for the new module.

Figure 19 shows a representation of VPL-Moodle subsystem, focusing on the

structure of the data directories. The new submodule will use two directories inside its

root directory. One of them is to store the source code of all the grading-submodules

associated programs, and the other one is to store additional files for every VPL

activity that has a grading process associated.

Figure 19. Data directories inside the VPL-Moodle subsystem

This focus of having separated directories helps in maintaining tasks. This avoids

the dependency of the Moodle’s web interface to manage files. The administrator can

go directly inside a directory to look for the file associated to a grading-submodule, or

for the files associated to a given VPL activity (which has additional files inside its

grading process).

More formally, it is necessary to model the new database’s tables. But firstly, it is

necessary to know the next implications:

Moodle

VPL
tables

Grading
module
tables

Moodle data
directory

Moodle
database

VPL data
directory

Grading data
directory

Grading-

submodules
Activities

Similarity Grading process
management

moduleJail

VPL-Moodle subsystem
(plugin)

68

• The Moodle’s database lacks of foreign keys which implies that there is no

referential integrity. It does not mean that the DBMS (Database

Management System) used in the data layer for Moodle lacks of referential

integrity support. It means that tables inside the Moodle’s database have not

been created expressing foreign keys, then they are not “related” and the

DBMS is unable to check for referential integrity. This topic has been further

analyzed in a forum in the Moodle’s official site36. In spite of XMLDB (tool

provided inside Moodle to define new tables to create in the database)

allows specifying foreign keys37, these foreign keys are not reflected in the

database. They are saved as useful information to get a constrained system

in the future.

• The official Moodle’s documentation says that every table must have as

primary key, a field named ‘id’38.

Considering the former points, Figure 20 shows the semantic data model for the

grading module.

Figure 20. Semantic data model for the grading module

Figure 20 depicts a set of entities, which have been defined thinking analogously to

a simulator program, which gives the possibility of adding new simulation elements. It

is, on the one hand, there is the possibility of adding more elements through their right

definition. On the other hand, when considering the creation of a new simulation

environment, it would be possible to depict any simulation element inside the

environment and setting its parameters.

36 https://moodle.org/mod/forum/discuss.php?d=200829
37 http://docs.moodle.org/dev/XMLDB_defining_an_XML_structure#Conventions
38 http://docs.moodle.org/dev/Database

69

It is necessary to make an explanation about every entity defined. Thus:

• Grading submodule. It is the representation of the grading-submodule

artifact defined in the analysis chapter. Its attributes name and description are

self described. The attribute programfilename saves the absolute path to the

location of the program file associated to the grading-submodule. The

attribute validated indicates if the associated program has no errors and

whether it is completely functional.

• Grading parameter. Every grading-submodule associated program could

require of parameters to its proper working. For example filenames, paths,

and so on. It will depend on criteria considered when designing the grading-

submodule. This entity will save the definition of the required parameters.

• Vpl. It is already defined inside VPL’s data model. Its id field allows linking

the grading process to a VPL activity.

• Process grading submodule. Every VPL activity will have a set of grading-

submodules to be used inside its grading process. When a grading-

submodule is selected to be part of this grading process, this is converted in

an element of that process, the new entity is called Process grading

submodule. This entity captures some attributes of the original Grading

submodule entity but they are completely independent. Additionally this

entity has some extra attributes that makes sense only inside the grading

process (the call order and a factor to calculate a final grade for a submission

for instance).

• Process grading parameter. This entity saves all the values for parameters

required by the Process grading submodule entity. As Process grading

submodule is to Grading submodule, Process grading parameter is to

Grading parameter.

Grading submodules and Grading parameters can persist and be used in any

grading process associated to a Vpl activity. Process grading submodules and Process

grading parameters only make sense inside the context of a grading process.

4.2.2 An abstract view of the grading process management module

The grading process management module is considered to be inside VPL tool,

which is a Moodle’s activity plugin. So the new module will be related with VPL and

with Moodle. Additionally, the new module will communicate with the VPL-Jail

subsystem to send information and data about the managed grading-submodules.

Figure 21 shows an abstract architecture of the grading module. This architecture

aims to show the influence of Moodle and VPL on the grading process management

module.

70

It is necessary to make an explanation about every layer of the architecture. Then:

• The VPL layer refers to information and data, which could be used by the

grading module. This information and data could include VPL activity’s

identification (every VPL activity must have a grading process associated),

access permissions to the VPL’s management (the grading module will

belong to VPL tool, so there will be some common permissions), useful

modules (the jail module inside VPL can be reused to the communication

between the new module and the VPL-Jail subsystem), and so on.

Figure 21. Architecture for the grading process management

• The integration layer is the bridge to receive information from VPL and to

provide information to the grading module. This layer makes possible more

maintainability in the solution. Because in possible updates of VPL plugin,

the changes should be done here. This layer could be represented in a

configuration file where the parameters needed by grading module are set

with VPL information.

• The libraries and programs layer includes a set of software components to

provide of new functionalities to the grading module. These useful functions

will help in the implementation of the top layers and will allow the

communication with the VPL-Jail subsystem.

• The two top layers aims to: prepare data and information, send it to the user

forms and show the user forms. They are defined in a way to maintain

compatibility with the Moodle structure.

• The transversal layer refers to a set of Moodle provided APIs 39. The use of

them can help to make quick implementations and to guarantee a complete

compatibility with Moodle; but in the other hand, following these guidelines

can imply coming into some issues from Moodle. These issues include: using

39http://docs.moodle.org/dev/Core_APIs

71

a combination of structured programming and object oriented

programming, and the lack of a mean to separate the logic, the data, and the

visual interface.

The architecture aims to be as independent as possible of VPL, but guaranteeing its

integration. Then, it is possible to think later in an own plugin or in be integrated with

another plugins. As it can be seen it is dependent of Moodle because it bases on its API.

4.2.3 User interfaces

Using the Moodle APIs, the user interfaces will be built following a common style.

Next, some sketches for the management features are shown.

Management of grading-submodules

This management is focused in allowing CRUD actions for grading-submodules.

The Moodle’s user management is a good choice to have a reference to start the

implementation. The code behind the user’s management will be useful to know how

to get the desired behavior. Regarding the view, Figure 22 shows the prototype of user

interface for the main management page.

Figure 22. View of grading-submodules management

This user interface shows a list of the existent grading-submodules. This view

allows going to add, edit or delete a grading-submodule. It is necessary another view,

which allows editing or adding a new grading-submodule. It is shown in Figure 23.

Management of the grading process

This management shows firstly the view of the complete grading process. This will

allow setting the order of grading-submodules performance inside the grading process,

and the deletion of any of them. It is shown in Figure 24.

Additionally, it is necessary a view that allows: adding new grading-submodules

inside the grading process, setting the factor (weighting) of every grading-submodule

to calculate the grade, and setting the values for all parameters required by grading-

submodules inside the grading process. Figure 25 shows the possible view.

72

Figure 23. View of grading-submodules creation / addition

Figure 24. General view of grading process

Figure 25. View for configuration of grading-submodules

73

4.3 Subsystems communication

Additionally to the design of both subsystems, it is necessary to consider the

communication between them. It will be done using the same technology as VPL. It

means using the server and service already implemented (refer to the description of

VPL in the state of the art chapter).

As first step, it is necessary to identify when the communication’s establishment will

be required.

4.3.1 Grading-submodules management

When a new grading-submodule is created, it is necessary to know if the associated

program is correct. So a compilation and a possible addition to a jar library in the VPL-

Jail subsystem will be required. Additionally, when the associated program is updated

and when a grading-submodule is deleted, a new processing will be necessary in the

libraries of the VPL-Jail subsystem. It can be seen in Figure 26.

Figure 26. Communication between subsystems in the grading-submodules management

As the grading module is new, the implementation of new methods for sending this

data will be required. Additionally, these methods have to send new types of request

to the Jail server.

Jail ServerMoodle ServerAdministrator

New grading-submodule
associated program

Create a script with execution environment
parameters

Load in memory the grading-submodule
associated program

Build a HTTP request object

Select a Jail server

Configure and establish a connection

Send a HTTP request

Receive HTTP response

Return results of the
action on jar file

Receive HTTP request

Send message as
HTTP response

Run the script to
manipulate jar file

Create a script to manipulate the jar file

74

In the VPL-Jail subsystem, it will be necessary adding the interpretation for new

kind of request coming from the VPL-Moodle subsystem.

4.3.2 Students’ submission

 The process to send is already implemented as well as the interpretation of the

associated request (the process can be seen in Figure 4) but it is necessary to modify the

method that prepares the data to be sent to the VPL-Jail subsystem. Now, the set of

files has to include the additional files required by every grading-submodule

associated program (defined inside the grading process), and the configuration file that

has the information of the whole grading process.

4.4 Chapter summary

This chapter has focused on the architecture design, which allow going deep in the

understanding of the solution proposed, and necessary before the implementation

stage. The analysis chapter showed the need of adding new features to the VPL-

Moodle and the VPL-Jail subsystems. Each of them has been described separately to

apply different design perspectives.

The VPL-Jail subsystem provides a sandboxed environment where the grading

process takes place. The architecture is formed by a set of layers with their roles well

defined. It is worth highlighting the orchestrator (including the configuration file) and

the grading-submodules layers. The Orchestrator takes control of the whole process

based on information provided by the configuration file. Additionally the grading-

submodules layer provides modularity, extensibility and flexibility to the grading

process. Taking advantage of the objects-oriented paradigm, the grading process has

been modeled with a set of different classes, which have been described including their

attributes, operations and relations. Additionally, the grading process has been

described through interactions among instances of the defined classes (Orchestrator,

AnygradingSubmoduleProgram, and CommandExecutor).

The VPL-Moodle subsystem is in charge of the management of the grading process.

This management requires working with data stored in the Moodle’s database and in

the Moodle’s data directory. Then, a data model and a directory structure for the

grading module have been defined. An abstract architecture to show the influence of

VPL and Moodle on the grading module has been provided. Additionally, the

management user interfaces have been defined through the drawing of some sketches.

All the classes designed and processes explained are helpful to go on with the

implementation stage. It is expected that the time and troubles during implementation

stage will be reduced.

75

5 Implementation and Validation

The design chapter had provided of useful classes and elements for the solution’s

implementation. This chapter shows important considerations and features during the

implementation of every element for a proof-of-concept prototype.

The implementation stage considers the two identified subsystems (VPL-Moodle

and VPL-Jail). Each of them uses different programming languages for its

implementation, and requires a set of different elements for a right working. The

implementation of the communication between the subsystems is considered as well.

The architecture’s validation is done in two ways. Firstly, it is demonstrated the

workability of the proposed architecture. Secondly the new module is validated

through two case-studies.

5.1 VPL-Jail subsystem implementation

The VPL-Jail subsystem hosts the jail environment, where the grading process is

carried out. The implementation of the architecture’s elements will be done from

scratch, which is an advantage because it is not limited by a given technology.

To allow the integration with VPL tool, modifications on some existent program

files will be done and will be explained as well.

5.1.1 Programming languages

Considering the architecture provided in the section referred to VPL-Jail subsystem

in the design chapter (Figure 11), orchestrator and grading-submodules layers contain

the main elements to be implemented. These elements have been modeled and

depicted in a class diagram in the design chapter (Figure 15). Then, the programming

language to implement them has to support objects oriented paradigm.

Java has been selected as the programming language to implement the two layers of

the architecture. This programming language has a set of features40 but in this case, its

object-orientation and its portability are the most valued features. Additionally, there

are a lot of external libraries already implemented, which could help to save

implementation time.

VPL’s elements in the VPL-Jail subsystem have been coded using two programming

languages. The first one is C++, which is used to code the Jail server program and for

default programs when using the default grading process. The other language is Linux

40 http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

76

shell scripting, which is used to code the evaluation script and will be used to code the

execution file as a script.

Summarizing, Java will be used to code the new elements (as classes), and C++ and

Linux shell scripting will be used to modify existent elements in VPL (necessary to

makes an integration).

5.1.2 Configuration file

Before starting to code the new classes, it is necessary to establish the structure and

format of the configuration file.

XML has been selected as format to write the configuration file because it has a set

of interesting advantages including: the ability to exchange and store data41 in any kind

of applications, the ease of writing XML documents, the ability to be human and

machine legible, the ease of writing programs to interpret XML and so on42.

The structure of the configuration file is highly related to the parser classes defined

in the design chapter. The structure is shown in Figure 27.

Figure 27. Structure of the XML configuration file

41 http://www.w3schools.com/xml/xml_whatis.asp
42 http://www.w3.org/TR/REC-xml/

77

This file stores information about the submission and about every grading-

submodule that will be considered inside the grading process. The complete

submission information will be used by the orchestrator and the information related to

each grading-submodule will be used by the grading-submodule associated program.

The information fields related to a submission includes:

• Student, it has information to identify the student. This information can be

the name or an id for instance.

• Activity, it has information to identify the activity. It can be the VPL

activity’s id.

• Submission, it has the submission number or the submission identification.

• Base grade, it is the base over which the final grade will be calculated.

• Final grade, it is the grade for the current submission.

• General comment, it stores a short comment for the submission.

• Detailed comments, it stores the comments of every grading-submodule.

The information fields about every grading-submodule include:

• Program name, it contains the full name of the grading-submodule

associated program (including the package). The .class extension is not

included.

• Description, it contains a short description for the current submodule. It has

to express the main action that the submodule will do.

• Program parameters, it has additional data required by the associated

program. It is a string, which includes parameters’ values separated by a

semicolon and without blank spaces. The parameters can be pathnames,

numbers, and so on. If one parameter has many values, they should be

separated by commas.

• Factor, a percentage which represents the submodule weight in the final

grade calculation. The addition of this field in all grading-submodules has to

be 100.

• Action file list, it has a list of filenames over which the main action of the

submodule will be executed. The list will be composed of full names

(including the package name) or relative names (just the filename) and the

file extension depending on every submodule.

• Executed, it shows if the submodule has been executed; it is independent of

the success or failed execution.

78

• State, it indicates if the submodule execution finished perfectly (success),

getting a full grade; or if there were some troubles (failed) and a partial grade

was obtained.

• Grade, it is the grade for the current grading-submodule. It is a numeric

value between 0.00 and 100.00 with 2 decimal places. There always has to be

a value in this field since its creation.

• Comments, detailed information about the execution of the grading-

submodule associated program.

5.1.3 Logging

Considering that Java has been selected as programming language to code, it is

possible to use some already built tools for logging. One of them is Log4J 243, which has

been selected due to its important features including its ease of installation, and its

automatic configuration ability.

The possible implementation was changed by performing a set of few steps, which

include: downloading the core and API jar files, setting the logging through defining

an XML configuration file, setting the references to the jar and configuration files in the

Java Classpath, importing the logging classes inside the interested classes, and defining

a static logger variable in the same new classes.

Figure 28 shows the configuration file used by the logger in the grading process.

This file has to be named as log4j2.xml to use the automatic configuration.

Figure 28. XML configuration file for the logger in the grading module

This configuration file defines that the logs will be written in a file named

vpl_grading.log in the directory /var/log/. The layout is defined through a pattern and

will register events since the TRACE type.

The instruction to define the static variable is:

static Logger logger = LogManager.getLogger(MyClass.class.getName());

43 http://logging.apache.org/log4j/2.x/

79

This variable references an instance of Logger named “MyClass”.

When working with this Log4J 2, defining log levels is possible; it allows classifying

logs by severity and for having granularity. Every log level has been associated to a

specific type of information. Thus:

• Trace. For information about method enter/exit.

• Debug. For information about important system commands executed.

• Info. For information send to the student. In this case information about the

grades.

• Error. For information about exceptions thrown by a given method. It is

possible to continue the process.

• Fatal. For information related to an action that stops the grading process. In

this case when the XML file is not loaded.

5.1.4 Application’s core

The application’s core joins all the classes that won’t change after the

implementation. It was mentioned in the class packages section in the design chapter

as well. All this classes will be deployed as a single jar file.

The parsing package

Class SubmissionConf [es.upm.dit.tfm.grad.pars]

public class SubmissionConf

extends java.lang.Object

This class represents the submission's information mapped from the XML

configuration file.

Class GradingSubmoduleConf [es.upm.dit.tfm.grad.pars]

public class GradingSubmoduleConf

extends java.lang.Object

This class represents the grading-submodule’s information mapped from the XML

configuration file.

These both classes represent the XML grading configuration file. JAXB44 (Java

Architecture for XML Binding) is the technology used to map the data from an XML

representation to an object representation. It helps to improve the developers’

performance because it eliminates the need of writing parsers.

This quick mapping is done through the use of annotations in the Java class. Figure

29 shows a piece of annotated code.

44 http://jaxb.java.net

80

The explanations of the annotations are:

• @XmlRootElemen(namespace = “Namespace name”) allows defining the root

element in the XML tree.

• @XmlElement(name = “xml element name”) allows naming the XML element

when its name is different of the attribute’s name.

• @XmlElementWrapper(name = “wrapper name”) allows defining a wrapper for

a set of XML elements. It is used to join the grading-submodule elements.

• @XmlType(propOrder = { "attribute 1", .., "attribute n"}) allows setting the

order of the elements in the XML document.

These annotations have been used inside the definition of both classes but there are

more of them. It is suggested go to the official page for further study.

Figure 29. Piece of annotated code to map the XML configuration file

The orchestration package

Class Orchestrator [es.upm.dit.tfm.grad.orch]

public class Orchestrator

extends java.lang.Object

This class controls the whole grading process. It has as attributes the name of the
configuration file, an instance of SubmissionConf class and a static variable for logging.
It has to load the XML file configuration data and then it will start to orchestrate the
process. The orchestration makes a loop in the list of GradingSubmoduleConf inside the
SubmissionConf instance. In each iteration, the orchestrator instantiates every grading-
submodule associated program and it will invoke the run method inside the instance.

81

Finally, the orchestrator will process every submodule results to calculate the final
grade for the current submission, to collect detailed comments, and to define a general
comment.

It is worth seeing how to create a new instance of this class and its set of important
methods. They are detailed in the annexes.

The system package

Class CommandExecutor [es.upm.dit.tfm.grad.system]

public class CommandExecutor

extends java.lang.Object

This class allows executing commands in the system console. It acts as a wrapper for

the SystemCommandexecutor class, which is provided by Alvin J. Alexander through his

site45. After the execution of a system command, the standard output and standard

error are caught and saved inside this class as well.

The constructor and important methods are shown in the annexes.

5.1.5 Application’s submodules

It makes reference to the existence of another jar file additional to the core. It is not

just an API because it allows adding new programs, which will evaluate a source code

considering a grading-criterion.

Initially, this jar contains only one abstract class, which acts as intermediary to add

new classes to evaluate the source code. This abstract class forces subclasses to

implement the run() method and provides them of some useful methods.

The submodules package

Class GradingSubmoduleProgram [es.upm.dit.tfm.grad.sub]

public abstract class GradingSubmoduleProgram

extends java.lang.Object

This class is the base for new grading-submodule associated programs, which will

be built by administrators or teaching-staff. It has as attribute a GradingSubmoduleConf

instance, a commandExecutor instance and logging static variable for logging. The first

one will have parameters to be used and updated during the execution of the

subclasses associated programs. The second one will execute one line commands in the

system console. In addition it provides of methods to make easier the implementation

of new subclasses.

The constructor and important methods are shown in the annexes.

45 http://alvinalexander.com/java/java-exec-processbuilder-process-1

82

AnyGradingSubmoduleProgram class [es.upm.dit.tfm.grad.sub]

It is possible to establish a frame to create any grading-submodule associated

program. The new class has to:

• Belong to the submodules package.

• Extend the GradingSubmoduleProgram class.

• Define a constructor as the GradingSubmoduleProgram class.

• Implement the run() method.

Additionally, a logging static variable can be added to record logs. To complete the

frame, it is possible to define a structure for the run method. Figure 30 shows the

structure identifying some key sections of code.

Figure 30. Structure for the run() method

The mandatory sections refer to initialize and set the state, comments and grade.

Precisely these three indicators will be considered to set the final grade and comment.

The lists of parameters and files sections are oriented to get data from the

GradingSubmoduleConf instance. This data will be used in the evaluation section.

83

The evaluation section can have any instruction, which helps to evaluate the code

considering a given criterion. It can include calls to execute system commands, reading

of the standard output and error, calculations, recording of logs, and so on.

Finally, the state, comments and grade have to be updated in the

GradingSubmoduleConf instance. This information will be taken by the orchestrator to

build the feedback.

5.1.6 VPL’s integration

The top layer of the architecture showed in the section referred to VPL-Jail

subsystem in the design chapter (Figure 11) allows integration with VPL. There are two

files in this level, the evaluation and the execution files. The evaluation file makes any

needed preprocessing on the source code files and generates automatically the

evaluation file. Both of them have been implemented as Linux scripts.

The evaluation file has been built to decode base64-encoded files (using base64 shell

script function), and to change the charset to UTF8 (UCS Transformation Format -8bit),

using iconv shell script function. It is worth highlighting that VPL does not support

submissions that include binary files46, so the implementation of support for this kind

of files using base64 encoding has been necessary.

The execution file makes a loop inside the lib directory and includes all the jar files

in the CLASSPATH environment variable. After that, the absolute path to the logging

configuration file is included in the CLASSPATH as well. Finally, it makes a call to the

orchestrator program, using the java command in the system console.

5.1.7 The lib directory

The architecture considers a layer for libraries and ancillary programs. These

libraries and programs have to be stored in a location inside the Jail server. The root

directory to save these files has been defined in /usr/share/vpl. This directory is copied

inside the jail environment before to start the grading process, so that the libraries and

programs required for the grading process will be available.

Inside the VPL root directory two more directories have been created. One of them

called conf, which stores the logging configuration file, and another called libs that

stores jar files of libraries and ancillary programs.

5.2 VPL-Moodle subsystem implementation

This subsystem provides of management features. It can be seen as the solution’s

front-end. The management includes the implementation of a user interface, which

46 https://moodle.org/mod/forum/discuss.php?d=154988&parent=939991

84

allows carrying out CRUD actions on grading-submodules, and the implementation of

a user interface to configure a grading process associated to a VPL activity.

As the grading process proposed here is based on the use of a new artifact (grading-

submodule), it is not enough with the modification of some user interfaces already

built in VPL. In fact, the new management interfaces have to be implemented from

scratch.

This section shows some important considerations made during the implementation

of the grading module and how the integration with VPL is carried out. It is necessary

to consider the diagram showed in the section referred to VPL-Moodle subsystem in

the design chapter (Figure 21).

5.2.1 Programming languages

The grading module is considered to be inside VPL tool, which is a Moodle plugin.

So to guarantee the new module’s integration it is better to use the same programming

languages and API used in Moodle.

Then, the programming language used for the implementation is PHP. Moodle’s

APIs have been used to take advantage of them and to guarantee the integration.

5.2.2 Configuration file

This file defines some parameters, and its values, which will be used by other new

PHP programs. Some of the values are set based on values of VPL’s parameters. So it is

clear its role as a bridge between VPL and the grading module.

 At the moment, the configuration file defines the next parameters:

• The capability to manage the grading-submodules. It is based on the

capability to manage VPL configuration.

• The capability to configure a grading process. A grading process is always

associated to a VPL activity.

• The root directory for grading module data in the directory structure.

• The directory to save the grading-submodule associated program.

• The directory to save files associated to a given VPL activity. These files will

be used inside the grading process.

• Parameters to be used in the communication between the Moodle and Jail

subsystems. They include: the lib directory in the VPL-Jail subsystem, the

namespace for the submodules jar, the name of the submodules jar, the name

of the script that will manipulate the grading-submodules associated

programs in the VPL-Jail subsystem, the name of the request method to be

85

sent to the Jail server, and the name of the configuration file for the grading

process.

5.2.3 Lib file

This file stores a set of useful functions, which will be used in other PHP files inside

the grading module. These functions are oriented to:

• Set parameters to establish layouts for the web forms.

• Make a complete creation or deletion processes when it is necessary to

operate with data from the system directory and from the database.

• Operate with files inside the system directory.

• Change the data charset.

• Get lists of registers from the database. They are based on Moodle database

API.

• Prepare data before to be sent to the Jail server.

5.2.4 User interfaces

The implementation of the user interfaces follows the structure provided in

Moodle’s official documentation to create forms47. Then, to create a user interface is

necessary to code two PHP files.

The first one acts as a kind of controller (it just orders processes) which makes some

processes including: setting up the page layout, preparation of data to be sent to the

form, instantiation of a form to show, deploying of the web form, treatment of actions

sent by the form, and treatment of data sent in the form.

The second one represents the form to be displayed and is implemented as a class

which extends from the moodleform class. It sets all the HTML elements that the form

will contain and will display. It is possible through the use of the formslib Moodle

API48.

There have been implemented 3 typical user interfaces which follow the explained

way. They were implemented to allow:

• Creating and editing grading-submodules.

• Adding new grading-submodules inside the grading process.

• Setting the parameters of the grading-submodules selected for the grading

process.

47 http://docs.moodle.org/dev/Form_API
48 http://docs.moodle.org/dev/lib/formslib.php_Form_Definition

86

Additionally two user interfaces have been implemented and oriented to show an

information’s summary. They are:

• The list of existent grading-submodules. It is useful to go to perform CRUD

actions.

• The list of the grading-submodules inside a grading process. It allows seeing

a summary of the grading process with its grading-submodules and the

parameters’ values. Additionally it allows deleting and sorting the grading-

submodules in the grading process.

In total, 13 new PHP source code files have been implemented.

It is worth mentioning the use of the functionality to repeat elements, which was

used to work with any number of parameters. This functionality allows repeating

elements in the user form as the user wants. For further information it is suggested go

to the official documentation49.

5.2.5 VPL’s integration

To get integration with VPL, the creation of a new PHP file and the modification of

some already built files inside VPL have been needed.

The configuration file has been built to be the integration layer of the architecture

shown in the section referred to VPL-Moodle subsystem in the design chapter (Figure

21). Some of the parameters specified there take values from VPL’s variables (These

parameters are described in the configuration file’s description done previously in this

chapter).

There are a set of modified VPL’s files. Initially the goal was trying not to alter the

existent files but it could not be avoided. The altered files include:

• /mod/vpl/db/access.php to define capabilities in the system.

• /mod/vpl/locallib.php to define global variables, which will allow

accessing to the capabilities defined previously.

• /mod/vpl/vpl_submission_CE.class to alter the data to be sent in a submission. It

includes the automatic generation of the configuration file for the grading

process in the VPL-Jail subsystem.

• /mod/vpl/lang/en/vpl.php to define the messages to be displayed in the user

interfaces.

• /mod/vpl/lib.php to add new nodes into the Moodle’s navigation tree.

• /mod/vpl/settings.php to add an administration link in the VPL’s

administration.

49 http://docs.moodle.org/dev/lib/formslib.php_repeat_elements

87

• /lib/adminlib.php to define the element administration link.

5.3 Subsystems communication

After VPL-Jail and VPL-Moodle subsystems’ implementation it is necessary to

establish a mean to communicate those considering the changes made on both

subsystems.

5.3.1 Code reusability

The main idea of using VPL as tool base was to reuse its technology already

implemented to save implementation time. Then, the communication technology has

been maintained. It includes:

• Maintaining the XML-RPC protocol over HTTP to transport the requests and

responses.

• Using the jail communication module. This is inside the VPL-Moodle

subsystem.

• Using the Jail server program. This is in the VPL-Jail subsystem.

Even though the reusability has been applied, the implementation of new programs

was necessary as well as the modification of some existent files. They are explained in

the next sections.

5.3.2 VPL-Moodle subsystem

jailconnection.php file

This file belongs to the grading module inside VPL plugin. It contains the

jailconnection class that defines methods to make a request and send data to a Jail server

which uses XML-RPC protocol. It has as attributes the data to send, the request method

to ask in the server, a server instance and an attribute to save the server’s response.

This class is based on classes provided by the jail module inside VPL Moodle's

plugin. But it could be possible to use other classes which provide of a server’s

selection, the ability to build HTTP packages, and support the use of XML-RPC

protocol.

vpl_submission_CE.class file

This file defines a class to send a submission to the VPL-Jail subsystem. It has

methods to prepare the data and to send that, using the jail module. This file has been

altered to support collecting and sending files defined as parameters inside the grading

process, and to build and send the XML configuration file used by the grading process.

88

As key point it is worth mentioning the modification done to support the sending of

binary files to the VPL-Jail subsystem because it was not implemented in the version 2

of VPL tool. It was done through the use of base64 encoding before sending the data.

5.3.3 VPL-Jail subsystem

jail.cpp file

This file contains the Jail class which acts as the server program inside the VPL-Jail

subsystem. This receives the requests sent by the VPL-Moodle subsystem, identifies the

request associated method, decodes the information received, executes a given process

depending on the recognized method, prepares an HTTP response and sends it to the

VPL-Moodle subsystem. The basic process can be seen in Figure 4.

This program has been modified to interpret a new request method. This new

method is to execute actions when the grading-submodule associated program is

added, modified or deleted.

Additionally, this file uses the file jail.h. This file has been modified to add the

definitions of functions used in the Jail class.

Finally, it is worth mentioning that when binary data (base64-encoded) arrives from

the VPL-Moodle subsystem; this server is limited to only copying it inside the jail

environment. The decoding of this kind of files is being carried out in the evaluation

script inside the grading process. It was a temporal solution but susceptible of being

improved.

5.4 Validation

To validate the proposed architecture and its implementation, two case-studies have

been considered. They are based on real programming assignments proposed to

students at ETSIT. They are going to be configured in the tool from scratch.

5.4.1 Case study 1

The assignment asks the student to code a new Java class called ReceptorGPS and a

set of methods, which follow a given signature. The complete description of the

assignment (in Spanish) can be seen in the annexes section.

There is a set of Java classes (source files) provided by the teaching staff, which has

to be used by the student during its assignment implementation. This set includes

classes CoordenadaEsferica, CoordenadaCartesiana and SateliteGPS. They are already built

and do not need changes.

89

All the source files have to belong to the package es.upm.dit.prog.p3 and be

compressed in a zip file, which has to be called ‘practica3.zip’. This is the only file to be

uploaded as a student’s submission.

Grading criteria

The grading criteria include:

1. Checking the directory structure of the source files.

2. Compiling all the source files.

3. Testing the new class and its methods against a set of test cases defined in an

additional file.

The test cases file has to be built by the teaching staff but it is not provided to

students.

Required grading-submodules

Considering the grading criteria previously given it is necessary to build three

grading-submodules. Each of them will be associated to one criterion. They are:

1. A grading-submodule to unpack the zip file inside the jail and to check

whether the source code files maintain the directory structure.

2. A grading-submodule to compile the set of Java programs.

3. A grading-submodule to test the Java program against a set of test cases.

Grading-submodule associated programs

It is necessary to implement the grading-submodule associated programs. They will

be Java classes, which will extend from GradingSubmoduleProgram abstract class.

Class CheckGradingSubmodule [es.upm.dit.tfm.grad.sub]

public class CheckGradingSubmodule

extends GradingSubmoduleProgram

The main action of this program is checking the directory structure inside a zip file.

It means to check the existence of a set of source code files inside a directory structure.

The data required from the GradingSubmoduleConf instance includes the name of the

zip file and the list of files to check their existence. The name of the zip file is obtained

with the getProgramParameters() method in the GradingSubmoduleConf instance. The list

of the source code filenames is obtained as a String with the getActionFileList() method.

These names are separated by commas. Then it is necessary to split the list using the

commas as marks. To get a success evaluation, every source code file has to exist. This

is done with the execution of a system command. If there is at least one file not found

the status will be set as failed and the grade will be set with zero.

90

Class CompilationGradingSubmodule [es.upm.dit.tfm.grad.sub]

public class CompilationGradingSubmodule

extends GradingSubmoduleProgram

The main action of this program is compiling a set of Java source files. The data

required from the GradingSubmoduleConf instance is the list of files to compile. The list

of the source code filenames is obtained as a String with the getActionFileList() method.

These names are separated by commas. To get just one command for executing, it is

necessary to replace the commas by blank spaces. To get a success evaluation, there has

to be generated one .class file for every .java file specified in the list returned before. The

existence of every .class file is checked with the execution of a system command. If

there is at least one file not generated, the status will be set as failed and the grade will

be zero.

Class TestingGradingSubmodule [es.upm.dit.tfm.grad.sub]

public class TestingGradingSubmodule

extends GradingSubmoduleProgram

The main action of this program is testing a set of Java source files. It uses just one

class file (tester file) for the testing process. It can be obtained with the

getActionFileList() method in the GradingSubmoduleConf instance. The test process is

done with the execution of one system command. The results of the execution are

saved in a text file. This text file has in its first line the total tests number, in the second

line the failed tests number and in the additional lines the description of the failed

tests. All of them are saved in different variables. The grade is calculated taking into

account the total tests number and the failed tests number. To get a success submodule,

there has not to be a failed test. If there is at least one failed test, the state will be set as

failed but the grade will be set as it was calculated.

Grading-submodules management

Having the classes already built, they can be registered in the grading module

inside VPL Moodle’s plugin. Then, it will be possible to associate a grading process

(which will use the proposed architecture) to a VPL activity.

The registration of grading-submodules can be done through the VPL’s

administration inside Moodle. It means going through Moodle navigation tree as:

Moodle/Site administration/Plugins/Activity Modules/Virtual Programming Lab, a link to the

grading-submodules management is provided. The grading-submodules management

shows a message that there is not any grading-submodule and provides a link to go to

a new web page, which allows adding a new grading-submodule.

Every grading-submodule has to be registered there. Figure 31 shows the user

interface to set the data associated to the TestingGradingSubmodule. This user interface

91

allows setting the general information, which includes the name, the description and

the associated program. The grading-submodule name is used to save the associated

program. So this name and the class name in the associated program have to be the

same. Additionally this name is unique in the grading module. There is a validation to

guarantee it.

This user interface allows adding and deleting parameters that will be required by

the associated program as well. The parameters’ type can be number, text or file. It will

be considered to deploy web form’s elements when setting the parameters’ values

inside the grading process. A parameter to ask for the action filenames (names of the

files on which the grading-submodule associated action will be performed) is created

by default.

When all the information is ready, it is possible to save the grading-submodule.

Immediately a process is performed, this include: storing information in the database,

store the associated program in the file system, and sending the program to the Jail

subsystem to be compiled and added to the submodules jar file in the lib directory.

Figure 31. Adding a new grading-submodule for testing Java programs

92

After the registration of all grading-submodules, the management user interface

shows a summary of the existent grading-submodules. It can be seen in Figure 32. The

list of existent grading-submodules provides a quick description of each of them.

Additionally, shows information about the validation of the grading-submodule

associated program. It means if the compilation and addition to the jar file in the Jail

system was carried out without troubles. Links to go to add, edit or delete a grading-

submodule are provided as well.

Grading process management

Having grading-submodules already registered it is possible to define grading

processes associated to a given VPL activity. So firstly, the VPL activity has to be

created and configured.

Figure 32. Grading-submodules management user interface

VPL activity creation and configuration

Figures 33 and 34 show the creation of a VPL activity. The first one shows VPL as an

activity type to be created. The second one shows the form to fill the information about

the programming assignment. The layout is based on common Moodle’s activities.

There is a set of fields to fill information about the VPL activity, which is interpreted as

a programming assignment. The information about how to fill this information is

provided in the online official documentation of VPL50.

50 http://vpl.dis.ulpgc.es/index.php/es/pantallazos/capturas-profesor

93

Figure 33. VPL activity selection

Figure 34. VPL activity (programming assignment) creation

After the creation of a VPL activity is done, it is possible to configure that. Figure 35

highlights the management section in the navigation tree. The information about how

94

to set these settings is provided in the project’s official site51. Almost all the default

configuration is going to be used for this study case, but for the execution options and

requested files.

Figure 35. Settings’ management for a VPL activity

The execution options’ setting allows configuring that the VPL tool will evaluate the

student’s submission and this evaluation will be done automatically. These settings are

highlighted in Figure 36.

Figure 36. Execution options for a VPL activity

VPL provides of other functionality, which is the possibility of set the name of the

requested files. In this case-study, that functionality allows guaranteeing that the

student uploads a file called “practica3.zip”. It can be seen in Figure 37.

51 http://vpl.dis.ulpgc.es/index.php

95

Figure 37. Requested files for a VPL activity

When the VPL activity is configured, it is possible to manage its associated grading

process. To do this, the navigation tree shows 3 nodes, which allow entering to the

respective configuration user interface. This can be seen in Figure 38.

The first web form shows the summary of the grading process. Initially it is empty

and only the links to add grading-submodules and to configure parameters are shown.

Figure 38. Grading process web form

To define the grading process, it is necessary to include some grading-submodules

inside that. Figure 39 shows how the user interface to add new grading-submodules

looks.

96

Figure 39. Definition of grading-submodules inside the grading process

It is possible to include any grading submodule, registered previously in the VPL

system, inside the grading process. It is possible to define any number of grading-

submodules as well. Finally, considering that the evaluation of each of them will affect

the final grade for the submission, it is necessary to define the percentage of that

affectation. The adding of all the defined percentages has to be 100.

After the definition of which grading-submodules will be inside the grading

process, it is possible to see them in the grading process summary. Figure 40 shows

how this summary looks. In this form, it is possible to sort the order of the grading-

submodules as the teaching staff requires. Additionally, it is possible to delete grading-

submodules from the grading process. A message, showing that there are parameters

without assigned values, is shown as well.

97

Figure 40. Definition of grading-submodules inside the grading process

The next step is to set the parameters’ values. Figure 41 shows user interface to set

these values. They are separated considering every grading-submodule inside the

grading process. The web form element type depends on the parameter’s type defined

in the creation of the grading-submodule. Thus, the ‘zip file’ parameter required by the

CheckGradingSubmodule is a name so it is necessary to use a text field; in the other hand,

the ‘test cases file’ parameter required by the TestingGradingSubmodule has been

deployed as an element to upload a file. It is worth mentioning that every grading-

submodule has a main action implicitly defined, so it is always necessary to define a

set of filenames on which the action will be performed.

Figure 41. Configuration of grading-submodules’ parameters inside the grading process

98

Finally, Figure 42 shows the grading process summary already configured.

Figure 42. Grading process already configured

The student’s submission

The user interface for the student is provided by VPL. The student only has to

upload its assignment solution as a zip file, send it and see the feedback.

Figure 43 shows the detail of the assignment.

Figure 43. Student interface – assignment description

The student has to upload a file. It is shown in Figure 44. It has been highlighted the

name of the requested file, which was configured in the VPL’s configuration showed

before n this section (Figure 37).

99

Figure 44. Student interface – uploading the requested file

After the submission is done, the data is sent to the Jail subsystem, which performs

the grading process in a sandboxed environment. Then, the feedback is received. This

include de proposed grade, a general comment for the process and detailed comments

regarding every grading-submodule. It can be seen in Figure 45.

Figure 45. Student interface – feedback provided

5.4.2 Case study 2

This assignment asks the student to code a new Java class called NavegadorGPS and

a set of methods, which follow a given signature. The complete description of the

assignment (in Spanish) can be seen in the annexes section.

100

There is a set of Java classes (source files) provided by the teaching staff, which has

to be used by the student during its assignment implementation. This set includes

classes CoordenadaCartesiana, POI, Gasolinera y Hotel. They are already built and do not

need changes.

All the source files have to belong to the package es.upm.dit.prog.p5 and be

compressed in a zip file, which has to be called ‘practica5.zip’. This is the only file to be

uploaded in the student’s submission.

Grading criteria

The grading criteria include:

1. Checking the directory structure of the source files.

2. Compiling all the source files.

3. Testing the new class and its methods against a set of test cases defined in an

additional file.

4. Checking the code documentation.

The test cases file and a file with rules to check the code documentation have to be

built by the teaching staff but they are not provided to students.

Required grading-submodules

Considering the grading criteria previously given it is necessary to use four

grading-submodules. Each of them will be associated to a one criterion. They are:

1. A grading-submodule to unpack the zip file inside the jail and to check

whether the source code files maintain the directory structure.

2. A grading-submodule to compile the set of Java programs.

3. A grading-submodule to test the Java program against a set of test cases.

4. A grading-submodule to check the code documentation.

Here, it is possible to reuse the existent grading-submodules. So only the

implementation of the last grading-submodule is necessary.

Grading-submodule associated programs

It is necessary only the implementation of a new associated program.

Class StyleGradingSubmodule [es.upm.dit.tfm.grad.sub]

public class StyleGradingSubmodule

extends GradingSubmoduleProgram

The main action of this program is checking the style (comments and tags) in a Java

source file. The data required from the GradingSubmoduleConf instance include,

additionally to the file to be checked, the name of the file with the rules to check the

101

style, the comments number and the tags number. They are obtained with the

getProgramParameters() method in the GradingSubmoduleConf instance. All these

parameters are obtained as a String separated by semicolons. Then the list is split

(using semicolons as marks) to get the parameters in different variables. The file to be

checked is obtained using the getActionFileList() method in the GradingSubmoduleConf

instance. The style is checked with a system command execution. The command calls

an external program (CheckStyle.jar). The results are received in the standard output.

They include missed comments missed and tags. The results are processed to find the

number of comments and tags missed. The grade is established taking in account them.

A temporal and total grade will be assigned if there is not a missed comment, but this

grade will be reduced if missed tags were found. To get a success process, there has not

to be missed comments or missed tags. If there is one missed tag or comment, the

submodule will be set as failed but the grade will be set with the value calculated

previously.

Management and configuration of the process

The case-study 1 showed how to register new grading-submodules, how to create a

VPL activity, how to define a grading process and how to set the parameters required

by grading-submodules inside the grading process. Then, this section shows only

relevant differences between the case-studies.

This case-study has to register a new grading-submodule to check the style of the

source code. Its associated program needs a set of parameters including (as well as

action files): the absolute path to the checkstyle jar, the rules file to check the style, and

the number of comments (the same as the number of methods) and the number of tags

that the code should have to. The new grading-submodules management interface is

shown in Figure 46.

Figure 46. Grading-submodules management considering the StyleGradingSubmodule

102

The parameters’ configuration user interface adds a new section. It can be seen in

Figure 47.

Figure 47. Parameters for StyleGradingSubmodule

The complete grading process configured for this VPL activity is shown in Figure

48.

Figure 48. Grading process considering a StyleGradingSubmodule

Finally, the student has not to do anything different at all. He just uploads and

sends his file and sees the feedback. The feedback now includes a section for comments

about the documentation applied in his code. The final grade depends on the new

grading-submodule as well. This can be seen in Figure 49.

103

Figure 49. Student interface – feedback considering code style

5.4.3 Analysis

Both of the previous case-studies have allowed validating the achievement of

extensibility, modularity and flexibility features inside the grading process (it was the

goal of the current work).

The modularity is provided by the association of a given criterion to a grading-

submodule (it could be possible to associate a grading metric to the grading-

submodule as well). The extensibility is achieved because it is possible to register new

grading-submodules through the grading module management. This extensibility can

be achieved inside the grading process as well, because this process can support the

addition of any number of already registered grading-submodules. The flexibility is

provided through the possibility of sorting the grading-submodules inside the grading

process as the teaching staff needs.

Additionally, the modularity associated to the definition of every grading-

submodule makes possible the reuse of them. It can be seen considering the second

case-study because it was necessary the implementation of only one additional

grading-submodule.

At the end, all of these features make possible the reduction of the required time to

define a grading process when there are well designed and implemented grading-

submodules.

104

5.5 Chapter summary

This chapter has described important considerations made during the

implementation of the VPL-Moodle and VPL-Jail subsystems, and the subsystems’

communication. The implementation has included the creation of new programs and

the modification of others already built to integrate the new module with VPL. The

implementation itself has been a first way to validate the proposed architecture. The

formal validation has been through two case-studies.

The VPL-Jail subsystem implementation has included the architecture

implementation. The most of the implementation has been done using Java language

due to its objects orientation that has allowed representing the needed elements.

Additionally, Java provides interesting libraries which allowed saving implementation

time. These libraries provided of functionality to map the XML configuration file, to

generate log files, to create instances and pass information at runtime using Java

reflection technology, and to execute system commands. The classes implemented have

been defined to belong to two different jar files, the core and the submodules. The

second one will continue adding new classes as the administrator or the teaching staff

defines new grading-submodules. The integration with VPL has been provided

through the modification of a set of files (evaluation and execution) written in Linux

shell scripting language.

The VPL-Moodle subsystem implementation has focused on building the front-end

of the grading module. It has been done through the use of Moodle APIs and working

with PHP language. The implementation of well defined files (configuration, library)

and the jailconnection class has allowed guaranteeing integration with VPL and at the

same time the possibility of the tool’s independence.

The subsystems’ communication implementation has applied reuse of code. The jail

module for communication inside the VPL Moodle’s plugin has been used to create a

new class, which sends new grading-submodules associated programs to the VPL-Jail

subsystem. The Jail server, which is written in C++, has been modified to accept a new

request method when it is necessary to operate with grading-submodule associated

programs. It is worth mentioning the modification of the communication module

inside VPL to support sending of binary files encoded in base64 through XML-RPC

protocol.

The validation has been done through the analysis and deployment of two case-

studies, which are based on real programming assignments proposed to students at

ETSIT. This validation showed the whole process from scratch. It included the analysis

of the assignments, the definition and implementation of grading-submodule

associated programs, the registration of the grading-submodules and the configuration

105

of the grading process. These case-studies have allowed validating the features of

modularity, extensibility, and flexibility in the grading process. An additional feature

obtained is reusability.

106

6 Conclusions

As final part of this work, this chapter shows how much the goals, defined in the

introduction of this work, have been achieved. Considering the research field of

automatic grading of programming assignments, the main contributions and the future

work are highlighted as well.

6.1 Goals achievement

The main goal of this work, which was to propose and validate a new architecture

for automatic grading of programming assignments, has been achieved through the

performing of a set of software engineering and research stages described in this work.

To make a better explanation about this achievement, the specific goals defined in

the introduction chapter are cited.

“To use the knowledge about scientific research, which was acquired in the master course,

in a real problem”

“To make a systematic review of related works to get an actual context in automatic

grading of programming assignments”

These goals have been achieved together while carrying out the stage reported in

the state of the art chapter. The work done there used techniques learned in the

“Methodologies and Scientific Documentation” course. Initially, a systematic review of

the last reported related-works was carried out; this included the search of relevant

works and the definition of key features to make a comparison. This review helped to

get an actual context of the research field, necessary to establish the current problems

and research paths, to define a scope for this work, and to provide of a solution.

“To disseminate research results through scientific publications in international forums”

The first and fundamental part of this work, which is systematic review of related

works, has been reported as a scientific article. This article has been accepted to be

published in the 7th International Technology, Education and Development

Conference. The article has as title: Programming Assignments Automatic Grading:

Review of Tools and Implementations (Caiza et al. 2013).

“To identify and use the most suitable features of software engineering, which can be

applied in this work”

After getting in the context of the programming assignments automatic grading,

some stages of the water fall software development model have been used to propose

107

and validate the solution. These stages include: the requirements specification, the

design, the implementation, and the validation. All of them have been considered

while carrying out the problem analysis, design, implementation and validation

chapters. These stages have been carried out with the use of knowledge learned in the

“Architecture and ICT services management” course, and with a deep study about

engineering and architecture of software.

“To gather a set of requirements based on necessities of the students and the teaching staff

inside the teaching-learning process of programming subjects”

“To analyze the requirements and the context to propose a suitable solution for the given

problem”

These both goals have been achieved while working in the stage reported in the

problem analysis chapter. This has included the definition of actors, the establishment

of use cases and the definition of a set of functional and non functional requirements.

All these steps have been carried out considering the information provided by the

systematic review and by the ETSIT’s context (because ETSIT has in charge the SEAPP

project). VPL was selected as a base tool to continue working, after a comparison

among some tools for automatic grading. Based on this and on a scope definition an

analysis of the solution was provided.

“To apply principles of software and services architecture to design a solution for the

given problem”

The design chapter has required using principles of software architecture to design

and to provide of software artifacts. The designed artifacts have allowed representing

the proposed architecture from a higher level, using a layer-based representation, to a

lower level using a class diagram representation. These artifacts have been defined

considering two subsystems that compose the VPL tool. This stage allows having a set

of useful artifacts that are useful for the implementation stage.

“To validate the architecture proposed through the implementation of a working

prototype and with the use of it in real case-studies”

“To evaluate the results for establishing conclusions and future works”

These goals have been achieved at the end of the implementation stage and with the

success results of the case-studies. The implementation and validation chapter has

shown firstly that the architecture is workable and secondly, that the architecture

works well. The architecture allows the grading process to be modular, extensible and

flexible with the use of grading-submodules. Additionally the reusability of the

108

grading-submodules can be obtained when a good design of the artifact and the

associated program is carried out.

Finally, the realization of this work has helped to improve the capabilities that the

“Master Universitario en Ingeniería de Redes y Servicios Telemáticos” aims to provide

to its students52, standing out those related to software and services architecture, and

those related to research training.

6.2 Main Contributions

This work could be helpful to other related works and so it is necessary to make

explicit the main contributions. These include:

• An architecture proposal, which is based on the definition of an orchestrator

and grading-submodules (in any number and any arrangement), which

could be implemented with any technology. This architecture can be used by

already implemented tools or by new ones.

• A systematic literature review, which allows having a current context of the

developed solutions in the field of the programming assignments automatic

grading. This context and unsolved problems can be useful for other future

related works.

• A grading criteria characterization, which can be considered as a first stage

to define a model of grading programming assignments. Additionally this

characterization can be used to get a better understanding when studying

automatic grading tools (when different terms are used to express grading

criteria).

• A comparative analysis of grading tools, which can be useful to get a quick

sight about them, and to know their advantages and disadvantages.

It is worth highlighting that the idea of the grading-submodule artifact can be used

or improved to define new ways of grading or new architectures. In addition, the

elements of the proposed architecture are already implemented and can be reused to

going on with new implementations because they have been implemented as open

source. It can help to save implementation time in related projects. The mention of

used technologies can be helpful to provide a first sight of them and to think about

them as possible solutions for issues in other projects with similar functionalities.

Finally, the considerations made in the different stages can be useful for other projects

quite similar or which follow a similar process that which performed in this work.

52 http://web.dit.upm.es/~doct/muirst/competencias.html

109

6.3 Future Work

The present work has validated the proposed architecture. It means that the

architecture works as expected but it does not mean that it could not be improved.

Possible improvements are:

• Create of new grading-submodules. The proposed architecture aims to

provide to the teaching staff the capability of configuring a grading process

that includes many metrics and criteria. So it is necessary to make more tests

focused on grading process that includes more grading-submodules and

more variable arrangements.

• Measure optimized time in the grading processes definition. After the

creation and registration of grading-submodules, the time to define and

configure grading processes associated to assignments could be shorter than

using other solutions. It could be probed through measuring the time that

the configuration of a grading process takes in this solution against the time

needed by other solutions’ configuration.

Possible improvements maintaining the VPL-Jail subsystem but making changes on

the VPL-Moodle subsystem are:

• Define a management module for grading processes. The case-studies have

shown that sometimes the grading process could be very similar. Even, the

grading process (without the parameters’ values) could be the same among

different assignments. So it could be possible to define a management of

grading processes, it could help to reduce the time of the grading process

definition.

• Annotate the grading-submodules. Considering a possible increment in the

number of grading-submodules registered and a way to sort and filter them

when defining the grading process, it is possible to create tags to make a

classification. These tags could be metrics, criteria, and even the

programming language associated.

• Improve the deployment of ancillary programs. The current solution

supports the use of ancillary programs; these programs have to be placed

manually in the libs directory. It could be possible to implement a

management interface for these programs.

Improvements without considering Moodle’s integration as requirement:

• The current solution has been divided in two parts. The main part, which

contains the proposed architecture for the grading process, has been

110

implemented in the VPL-Jail subsystem and is quite independent of the

other subsystem. It means that the grading process could be used by any tool

that creates a sandboxed environment with all the required files and sends a

signal to start. On the other hand, the VPL-Moodle subsystem provides of

the management interface and stores files required by the grading process.

Then, it is possible to think about a solution which can store the data and

maintain the jail environment, and provides everything as a service. It means

that it could provide a service to access an assignments’ repository, a service

to copy and to store the data inside that system, a service to start with the

grading process, and so on; in this case this solution would be completely

independent and could connect any system (just a front-end), which would

provide interfaces to connect the solution.

Possible improvements considering changes in the architecture’s elements:

• Regarding the grading-submodule associated program, it acts as a wrapper

written in Java that can call another libraries or ancillary programs, which

have to be located in the libs directory. But it is possible to think about the

possibility that the wrapper supports calls to other programs in other hosts

through services. The idea appeared because there are already built tools

which can provide the evaluation of some metrics as a service. In this case

the wrapper could be more powerful.

• The XML configuration file is quite important for the proposed architecture

because it defines the calls sequence for the grading-submodules (all of them

are performed) and defines that the final grade will be calculated

considering percentages for every success grading-submodule passed. This

file could be changed to support more ways to calculate the final grade and

additionally to stop the process if some grading-submodule was not passed.

These features could be configurable.

Others possible future works:

• The review of existent tools to evaluate a given metric showed that Java is

the programming language with most already built tools. So it is possible to

build more of this kind of tools or libraries for other programming

languages.

111

Bibliography

ALLEVATO, A. and EDWARDS, S.H., 2012. RoboLIFT: Engaging CS2 Students with Testable,
Automatically Evaluated Android Applications. ACM.

AMELUNG, M., FORBRIG, P.and RÖSNER, D., 2008. Towards Generic and Flexible Web Services
for e-Assessment. ACM.

AYDIN, C.C. and TIRKES, G., 2010. Open Source Learning Management Systems in e-Learning and
Moodle. IEEE.

BELLAS, F. Introducción a La Orientación a Objetos. Available from:
http://www.tic.udc.es/~fbellas/teaching/ioo/IOO.pdf.

CAIZA, J.C. and DEL ALAMO, J.M., 2013. Programming Assignments Automatic Grading: Review
of Tools and Implementations. Valencia, Spain ed. IATED, 4-6 March, 2013.

CHOY, M., et al, 2008. Design and Implementation of an Automated System for Assessment of
Computer Programming Assignments. Advances in Web Based Learning–ICWL 2007, pp. 584-596.

COCKBURN, A., 2001. Writing Effective Use Cases. Addison-Wesley Boston.

DOUCE, C., LIVINGSTONE, D. and ORWELL, J., 2005. Automatic Test-Based Assessment of
Programming: A Review. Journal on Educational Resources in Computing (JERIC), vol. 5, no. 3, pp.
4.

DOUGIAMAS, M. and TAYLOR, P., 2003. Moodle: Using Learning Communities to Create an Open
Source Course Management System.

ECKSTEIN, G., 2010. Guide to Learning Management Systems. Available from:
http://eckstein.id.au/5588/learning-management-systems/lms-review-options/.

EDWARDS, S.H. and PEREZ-QUINONES, M.A., 2008. Web-CAT: Automatically Grading
Programming Assignments. ACM SIGCSE Bulletin, vol. 40, no. 3, pp. 328-328.

FORSYTHE, G.E. and WIRTH, N., 1965. Automatic Grading Programs. Communications of the
ACM, vol. 8, no. 5, pp. 275-278.

GARCÍA GONZÁLEZ, A.J., TROYANO RODRÍGUEZ, Y., CURRAL, L. and CHAMBEL, M.J.,
2010. Aplicación de Herramientas de Comunicación de la Plataforma Webct en la Tutorización
de Estudiantes Universitarios Dentro del Espacio Europeo de Educación Superior. Pixel-Bit:
Revista De Medios y Educación, no. 37, pp. 159-170.

HIGGINS, C., SYMEONIDIS, P.and TSINTSIFAS, A., 2002. Diagram-Based CBA using DATsys
and CourseMaster. IEEE.

HIGGINS, C.A., GRAY, G., SYMEONIDIS, P. and TSINTSIFAS, A., 2005. Automated
Assessment and Experiences of Teaching Programming. Journal on Educational Resources in
Computing (JERIC), vol. 5, no. 3, pp. 5.

112

IHANTOLA, P., AHONIEMI, T., KARAVIRTA, V.and SEPPÄLÄ, O., 2010. Review of Recent
Systems for Automatic Assessment of Programming Assignments. ACM.

JELEMENSKÁ, K. and ČIČÁK, P., 2012. Improved Assignments Management in Moodle
Environment. INTED2012 Proceedings, pp. 1809-1817.

LEAL, J.P. and SILVA, F., 2003. Mooshak: A Web‐based multi‐site Programming Contest
System. Software: Practice and Experience, vol. 33, no. 6, pp. 567-581.

MARTÍNEZ, J., 2011. La Orientación y La Tutoría En El Espacio Europeo De Educación Superior.
Available from: http://www.eumed.net/rev/ced/23/jamg.htm.

MÉNDEZ, I.C., 2008. Mejora de la Acción Tutorial Universitaria a través de las TIC.

PATIL, A., 2010. Automatic Grading of Programming Assignments. Master's Thesis, San José
State University.

QUEIRÓS, R.A.P. and LEAL, J.P., 2012. PETCHA: A Programming Exercises Teaching Assistant.
ACM.

RAYNAL, F., 2001. Xinetd. 02/28/2001, Available from:
http://www.linuxfocus.org/English/November2000/article175.shtml;.

RODRÍGUEZ DEL PINO, J.C., DÍAZ ROCA, M., HERNÁNDEZ FIGUEROA, Z. and
GONZÁLEZ DOMÍNGUEZ, J.D., 2007. Hacia la Evaluación Continua Automática de Prácticas
de Programación. Actas De Las XIII Jornadas De Enseñanza Universitaria De La Informática.Teruel,
pp. 179-186.

RODRÍGUEZ-DEL-PINO, J.C., RUBIO-ROYO, E. and HERNÁNDEZ-FIGUEROA, Z.J., 2012. A
Virtual Programming Lab for Moodle with Automatic Assessment and Anti-Plagiarism
Features.

ROMLI, R., SULAIMAN, S.and ZAMLI, K.Z., 2010. Automatic Programming Assessment and Test
Data Generation a Review on its Approaches. IEEE.

RUIZ, F. and LÓPEZ, P. Arquitectura Lógica Del Sistema (En Desarrollo Orientado a Objetos).
Available from: http://www.ctr.unican.es/asignaturas/is1/is1-t11-trans.pdf.

SOMMERVILLE, I., 2005. Gestión de Calidad. In: Ingeniería del software 7/e Pearson
Educación. Gestión De Calidad, pp. 587-604 ISBN 9788478290741.

SPACCO, J., et al, 2006. Experiences with Marmoset: Designing and using an Advanced
Submission and Testing System for Programming Courses. ACM SIGCSE Bulletin, vol. 38, no. 3,
pp. 13-17.

Unesco., 2008. Using a Learning Management System in Education. 08/25/2008, Available from:
http://www.unescobkk.org/education/ict/online-resources/databases/ict-in-education-
database/item/article/using-a-learning-management-system-in-education/.

WANG, T., et al, 2011. Ability-Training-Oriented Automated Assessment in Introductory
Programming Course. Computers & Education, vol. 56, no. 1, pp. 220-226.

WINER, D., 2003. XML - RPC Specification. 06/30/2003, Available from:
http://xmlrpc.scripting.com/spec.html.

113

YELMO, J.C., 2012. La Calidad Del Software. Lecture Notes of Software Engineering at ETSIT-
UPM.

YUSOF, N., ZIN, N.A.M. and ADNAN, N.S., 2012. Java Programming Assessment Tool for
Assignment Module in Moodle E-Learning System. Procedia-Social and Behavioral Sciences, vol.
56, pp. 767-773.

114

Annex I: Scientific article about the systematic literature

review

115

PROGRAMMING ASSIGNMENTS AUTOMATIC GRADING:
REVIEW OF TOOLS AND IMPLEMENTATIONS

Julio C. Caiza, Jose M. Del Alamo

Universidad Politécnica de Madrid (SPAIN)
j.caiza@alumnos.upm.es, jmdela@dit.upm.es

Abstract

Automatic grading of programming assignments is an important topic in academic research. It
aims at improving the level of feedback given to students and optimizing the professor time.
Several researches have reported the development of software tools to support this process.
Then, it is helpful to get a quickly and good sight about their key features. This paper reviews an
ample set of tools for automatic grading of programming assignments. They are divided in those
most important mature tools, which have remarkable features; and those built recently, with new
features. The review includes the definition and description of key features e.g. supported
languages, used technology, infrastructure, etc. The two kinds of tools allow making a temporal
comparative analysis. This analysis shows good improvements in this research field, these
include security, more language support, plagiarism detection, etc. On the other hand, the lack
of a grading model for assignments is identified as an important gap in the reviewed tools. Thus,
a characterization of evaluation metrics to grade programming assignments is provided as first
step to get a model. Finally new paths in this research field are proposed.

Keywords: Automatic Grading, Programming Assignments, Assessment.

1. INTRODUCTION

The first reference about programming automatic grading comes from 1965 [1]. It has been
almost fifty years since it started and the number of students who requires of programming skills
is growing. It is not only about computer science or information technology degrees. It includes
students of many engineering degrees as well. Nowadays, almost every engineering program
includes at least a basic programming course.

Another point to consider is the difficulty of getting programming skills by students. The main
path to improve this has been the increment of solved programming exercises. This has to be
accompanied with a good feedback. The feedback would be provided by a professor or a
teaching assistant (teaching staff). Considering the number of engineering students and a good
set of programming assignments, a manual assessment turns into a difficult or even an
impossible task. The problem for the teaching staff is the excessive and maybe repetitive
workload.

Several researches have reported the development of software tools to automate the process.
These tools would give a feedback to orientate the students’ learning, and will liberate teaching
staff to do more productive work, giving focused help for instance. Almost every tool supports
these goals and additionally tries to offer new features based on solve new gaps. These new
gaps, among others, refer to plagiarism detection, secure test environment, controlled resource
use, the diversity of criteria for grading [2] and the definition of pedagogical models [3].

There has been a good research in the field but now the problem is that there are many tools. If
there is an institution which needs to implement a tool of this type or wants to develop a new
tool it would be necessary to get a quickly and good sight about the state of the art. A tools’
review will be helpful to find important features of already built tools. In addition this kind of work
will give new ideas to improve or to build a new tool, which could be used broadly.

This paper reviews a set of mature and recent tools for automatic grading of programming
assignments getting and showing key information. The next sections include the revision of
related work to get information about the evolution in this research field. Next, a set of important
tools is described, taking into account their key features. A comparison and an analysis will be
shown to establish the current situation in this field. Then a grading metrics characterization is
proposed. The last section includes conclusions and future work.

116

2. RELATED WORK

Many tools for automatic assessment of programming exercises have been built since the first
appearance. A tools’ review has been done before. It is necessary to know which the main
conclusions of these works were. They will be useful to know if actual tools have already filled
all the gaps.

To see an evolution, it is necessary to take a temporal perspective. Douce et al. in [4] make a
good and quick characterization of these tools evolution until 2005. It identifies three
generations of tools. The first one refers to times when working on operating systems and
programming languages was necessary, and the assessment was only made considering a
right or a wrong answer. The second generation refers to work with tools, which came with the
operating system, to build new tools. C and Java languages were mostly used in development.
The third generation is just around the time that this work was done. The main improvements in
the reviewed tools are the orientation of using web-based technologies. It reports an increment
in support for more programming languages as well.

Douce et al. [4] gave the next steps for automatic assessment of programming assignments. In
[5] Ihantola et al. made a work covering tools developed since 2005. Taking these two works, it
is possible to contrast them to show the improvement in some issues. These issues can be
classified as technical, pedagogical and for a system adoption.

Regarding technical issues, Douce et al. indicated some research paths in [4], which included
grading of GUI (Graphical User Interface) programs; meta-testing which refers to qualify applied
tests; use and configuration of safe systems to test the programming assignments, the idea is to
protect the host system form intentional or unintentional malicious code; integration of systems
to avoid overwhelm the user, usually the idea would be integrate the tool with an LMS (Learning
Management System), it can be reached using web-services; and support for web
programming grading, it was because universities started to teach web programming and then
grading this was necessary.

Ihantola et al. in [5] and Romli et al. in [6] had reported improvements in systems integration
with LMS and in security for the host system. Then, issues like grading of GUI programs, meta-
testing, and support for web programming stayed waiting for more research.

Regarding pedagogical issues, the reported works lack a common grading model. Every
institution and even every teacher has his own way to establish a grade. So a reference model
could be helpful. In reviews did in 2010, the correctness is reported as the main metric to grade.
Some works started to use static and dynamic analysis as well, but in general, every work
proposes its own set of metrics to grade. As a result, at that time, there was not a common
approach yet; maybe the first step to build a model could be the metrics’ characterization.

About feedback, there are some implications: quickly feedback could trigger trial-error practices,
how much useful is the automatic feedback, and which is the adequate quantity of feedback.
Some works try to provide flexibility to feedback and allow manual and automatic solutions [7].

Some tools have considered the implementation of plagiarism detectors. Usually they are in an
additional module but not affect the grading process. Although it is clear that plagiarism
detection would imply in a sanction.

With regard to systems’ adoption, both works [5] and [6] showed that a big number of tools had
been built but they are not broadly used. It is because every tool has been done considering
specific requirements. An important way to increase the adoption was to work on open source
projects. Some projects have done this and its acceptance has grown [7] but a definitive broadly
used tool had not been reached. In [6] is proposed the building of a flexible and parameterizable
system and it seemed a good path to reach the goal.

3. TOOLS’ REVIEW

The common goal to build or to use these kinds of tools is to improve programming skills in the
students, paying special attention to beginner students. The skills will be improved through
solving many programming exercises. Students can go on the problems as quickly as they get
good feedback. It would help them to understand their mistakes and to improve their skills.

117

Additionally students get a real benefit, which is to get a fair grade not dependent on personal
considerations of the academic staff [2].

Considering the quantity of students in a regular class of engineering and a big number of
programming exercises, it is not viable manual grading. Then the idea is not overwhelm the
academic staff either, so another goal is to optimize the time of academic staff. The saved time
could be used in more productive process like planning and designing the lectures or just giving
more personal attention in focused problems.

As the research in this field increases, new goals are proposed. Thus, in [8], [9], [10] and [11] an
extra goal is to get the integration with a LMS to improve the performance of the programming
assignments assessment process. In [12] is proposed the use of services to reach this goal. In
[13] one goal is to collect detailed information to research deeply the students’ skill improvement
process. More recently, Allevato and Edwars [14] have as a goal to get the interest of students
using the popularity of smartphones and mobile applications.

3.1 Analyzed Key Features

The next key features have been defined considering they are important in a deployment case:

• Supported programming languages. It is a very important feature when it is considered
to make a quickly implementation. It could define the use or not of a tool.

• Programming language used to develop the tool. This feature has great relevance when
there is a set of policies respect of the software used in an institution. In the case of
customization or maintenance, it would be a valuable feature to choose a tool.

• Logical architecture. It is an important feature when a modification of the tool is being
considered. This architecture will show the modularity, scalability and flexibility level. It
could show how the different modules work and how the system could connect with
other systems.

• Deployment architecture. It shows how the hardware over which the tool works is. It is
helpful to know if a current environment will support the implementation of a tool. In the
worst case it will indicate the resources needed and therefore will help to determine the
cost of an implementation.

• Work mode indicates if the tool can work alone, for clear implementations; or if the tool
can work as plugin, when it is supposed to work with another system, an LMS for
instance.

• Evaluation metrics. It displays how the tool can establish a grade. It considers which
metrics are being considered inside the grading process. Even, how the grade
calculation is done.

• Technologies used by the tool. It is helpful when it is considered to deploy or to build a
new tool. In the first case it would help to establish compatibility between the tool and a
legacy system. It is useful for future maintenance as well. In the second case it is very
helpful to know which technology (standards, protocols, libraries, etc.), could help to
face a requirement.

3.2 Tools

3.2.1 CourseMarker

A tool developed in the Nottingham University to avoid the particular criteria of teaching staff.
The main advantages are considered being scalability, maintainability, and security [2]. The
supported programming languages for grading are Java and C++ and it has been built using
Java. Its architecture shows 7 subsystems: login, it controls all the authentication process;
submission, it receives the different submissions precisely; course, it stores information about
the process; marking, it has in charge the grading process, and the storing of the submitted files
and marks gotten; auditing, it has as responsibility to log all actions; and a subsystem to control
the communication among the others.

118

As metrics to establish a grade it considers typography (indentations, comments, etc.),
functionality through test cases, programming structures use, and verification in the design and
relations among the objects.

It works with technologies like Java RMI (Remote Method Invocation) for communication among
the subsystems, regular expressions to verify results and DATsys [15] to verify objects design.

Additional important features include: the capacity to work with feedback levels, the
orchestration among subsystems is defined by a configuration file, feedback and grades can be
customized, there is plagiarism detector when grading, submissions number and CPU quantity
are configurable, and finally there are security considerations which are detection of malicious
code and execution in a sandbox environment.

3.2.2 Marmoset

It has been built in the University of Maryland. Its main goal is to collect information about
development process to improve the student skills [13]. Its main advantages are to make a
complete snapshot about the student's progress, so the student development can be analyzed
in detail; the use of different types of test cases (student, public, release, secret); and a
personal support through comments' threads on the code.

Originally the paper reported grading of code written in Java, C, Ruby and Caml Objective.
Now, the official web page

53
 informs that it works with all different programming languages. The

architecture includes: a J2EE (Java Enterprise Edition) webserver, a SQL database, and one or
more build servers. These last are used in a safe and lonely environment to prevent effects of
possible malicious code. The build servers’ disposition helps to provide scalability and security.
The metrics to establish a grade include dynamic and static analysis. The dynamic analysis is
done through test cases.

3.2.3 WebCat

The main features are the extensibility because of its plugins-based architecture and a grading
method based on how well students grade their own code [7]. The architecture design provides
a set of important features: security, it is provided through means like authentication, erroneous
or dangerous code detection; portability, because it has been built as a Java servlet;
extensibility and flexibility, it is inherent to the architecture; and support for manual grading as
well, it is because the academic staff can check students’ submissions and enter comments,
suggestions, and grade modifications. The official wiki

54
 affirms that it is the only tool that

integrates all these features.

The tool supports Java, C++, Scheme, Prolog, Standard ML, and Pascal, but it offers flexibility
to support any programming language. The grade is based on code correctness (how many
tests are passed), test completeness (which parts of the code are actually executed), and test
validity (test accurate-consistent with the assignment). Additionally plugins can provide more
metrics for evaluations (static analysis for instance). Additional features include: there are a lot
of plugins for Eclipse and Visual Studio .NET IDEs, and it has a GNU/GPL license.

3.2.4 Grading Tool by Magdeburg University

It has a really interesting goal, which is providing a tool which is not forced to work with a given
LMS, but avoiding the use of two systems independently [12]. It can be reached using services.
It shows a configurable focus. Then there are selectable components like the compiler, the
language interpreter, the grading method, and the data set. The submissions' number, and time
features are configurable as well.

The tool uses dynamic tests, compilers and interpreters to establish the grade. The supported
languages are Haskell, Scheme, Erlang, Prolog, Python, and Java. The architecture is very
interesting. It considers three servers: the front-end, it will be an LMS system; the spooler
server, it controls the request, the submissions queues and the back-end calls; and the back-
end servers, which are the modules to evaluate a programming language. To communicate the
servers, XML-RPC (Remote Procedure Calls) has been used.

53 http://marmoset.cs.umd.edu/
54 http://wiki.web-cat.org/WCWiki/WhatIsWebCat

119

3.2.5 JavaBrat

It is a tool reported in [8], and built as a master thesis in San José State University. It gives
support for two programming languages, Java and Scala. It uses Java to develop the grader
software and PHP to build a plugin for Moodle. The design includes three important modules: a
Moodle server with a plugin; a module which contains the graders depending on language and
a repository of problems; and the last module is Javabrat which has a set of services to call
graders and problems.

Although it can works as a Moodle's plugin, this tool can work alone through a web interface
developed as part of the project. This web interface was developed using JSF (Java Server
Faces) 2.0. The services are implemented using JAX-RS.

The work was centered in develop the web interface and the problems' repository. Then the
grading process is not very complex and is based on correctness, which is determined by test
cases. It is a semi automatic tool because it is necessary a revision of the report generated
when the grading process is done.

3.2.6 AutoLEP

A tool developed in Harbin Institute of Technology and which is presented in [16]. It has as main
feature the combination between static and dynamic analysis to give a grade. The dynamic
analysis refers to evaluating the correctness using test cases. The static analysis doesn't need
to compile or execute the code. It is just about to make a syntactic and semantic analysis and it
is reported as main difference with previous works.

The architecture includes: the client, a computer used by a student, it does the static analysis
and can provide of a quickly feedback; a testing server which has to do the dynamic analysis;
and a main server which has to control the information of the other components to establish a
grade.

3.2.7 Petcha

A tool developed in University of Porto. Its main goal is the building of an automatic assistant to
teach programming [11]. An important feature is the coordination among existing tools like IDEs
(Integrated Development Environment), LMSs and even automatic graders. It supports the
programming languages that IDEs do. The tested IDEs are Eclipse and Visual Studio.

Its architecture is defined as modules for every connected tool. Then, there is a module for the
LMS, the IDE, the exercises repository, and for the assessment engine. It relies on some
technologies to guarantee interoperability: IMS Common Cartridge as format to build packages
with resources and metadata, IMS Digital Repositories Interoperability and bLTI (Basic Learning
Tools Interoperability). Additionally it used JAWS (Java Web Start) to build the client interface
and it is working with MOOSHAK [17] as assessment engine.

3.2.8 JAssess

It has been built by researchers in two universities in Malaysia, University of Technology and
Tun Hussien Onn University [10]. Their goal is to have only one interface to access the
assessment process. JAssess is presented as an integrated tool with Moodle.

Their architecture shows the next modules: Moodle server, MySQL Server, JAssess, and
JAssesMoodle to communicate Moodle and JAsses.

About supported languages it only supports Java, and precisely it is the language used to build
the tool. Then it used libraries as Java File, Java Unzip, Java Runtime, Java Compiler and Java
Reflection. About the metrics considered to grade, it is a weakness for the tool because it only
depends on compilation. The evaluation process is not completely automatic.

3.2.9 RoboLIFT

The main approach is to get interest of students in programming using the popularity of mobile
applications and smartphones [14]. The increasing market of android smartphones and
applications makes increase the interest of students. This knowledge will be helpful when they
will finish their studies as well. The tool supports grading of Android applications.

120

The tool is based on WebCat [7], so the architecture will be the same with an additional
variation. The variation is the use of Robolectric

55
, which is software to accelerate the grading

process. The tool uses the development tools for Eclipse provided by Google.

The unit testing is considered as metric to grade. The tests are of two sorts, public and private
tests. The students know the first one kind, and the second type is only used in the definitive
submission.

3.2.10 Virtual Programming Lab

A tool built in Las Palmas University [9]. The goals of the project include to provide the students
with many programming assignments, and to support the managing and grading process. It can
be obtained through the integration with a LMS system. The tool supports many programming
languages including Ada, C, C++, C#, FORTRAN, Haskell, Java, Octave, Pascal, Perl, PHP,
Prolog, Python, Ruby, Scheme, SQL, and VHDL.

The architecture includes three modules: a plugin for Moodle, which allows the integration with
the submission and grades modules in Moodle; a code editor based on browser, which allows
coding without the necessity of an installed compiler; and a jail server, which hosts the
environment where the assignment will be evaluated. To develop this tool they have worked
with PHP to build the Moodle plugin. To implement the jail server, C language has been used.
Every language has an associated shell script for evaluation as well. The communication
between Moodle and jail servers is done with XML RPC. The jail server gives the services
through a Linux program called Xinetd. In addition the jail server implements a safe environment
with the Chroot Linux program.

For grading it consider the correctness, evaluated through test cases by default. The test cases
are specified in an own and easy syntax. The default scripts, which evaluate the programs, can
be changed to improve the evaluation method.

Additionally, this tool has some interesting features like: it is built under GNU/GPL license, it
allows automatic and semiautomatic process, it includes a plagiarism control tool, and it
provides configurable features for every assignment.

3.2.11 Moodle extension by Slovak University of Technology Bratislava

It is presented in [18]. Its main goal is managing and modeling digital systems using HDL
(Hardware Description Language). Then the work reports managing features like assignments
managing, and user type definitions. The only language supported is VHDL.

The tool evaluates a submission based on: compilation and syntactic analysis, functionality
doing comparisons with a model, and then through a stage to detect plagiarism.

4. COMPARISON AND ANALYSIS

The key features of each tool can be used to identify the real improvements since the last
reviews [5] [6] were carried out.

To analyze the improvements through the time, two tables with tool’s features are shown. The
Table 1 join tools built a few years ago, previous to the work presented by Ihantola [5] which
have been updated continuously. Precisely by their maturity, they count with really good
features and in some cases with a broad use.

The second table joins more recent tools, which have not been broadly used but that present
new features and propose new research lines even.

Firstly it is necessary to take into account which were the pending issues reported until 2010.
They were mentioned in an earlier section; technical issues which include lack of a GUI grading
tool, meta-testing, and support for web programming; pedagogical issues including lack of a
model to grade, trial-error practices, adequate quantity of feedback, and plagiarism; and
adoption issues.

As it can be seen most of these issues have been solved. Thus, RoboLIFT has the feature of
grade GUI applications because this uses LIFT, a library included in the WebCat project to

55 http://pivotal.github.com/robolectric/index.html

121

grade GUIs. Web programming languages have been considered as well, VPL can grade PHP
programs for instance. Trial-error practices has not been reported as a serious problem, it is
because a quickly solution is the submissions’ limitation. Technically it would not be difficult to
implement. The amount of feedback has been considered in tools like CourseMarker, which
offers the possibility to configure the level of detailed feedback to give the student.

Plagiarism has been seen as an important module inside an automatic assessment tool. Then,
some projects have considered it already.

The adoption of a tool depends on some features, which include: how long the tool has been
tested, if the tool has been developed as open source, how flexible, scalable, and configurable
a tool is. For example many institutions have adopted VPL as it can be seen in its web page

56
.

Table 1. Mature tools.

Tool's name Main Features
Supported
Languages

Work
Mode

Grading Metrics

CourseMarker

Scalability,
maintainability.
Security, configurability.
Plagiarism detection.
Work with levels of
feedback.

Java, C++. Standalone

Typography.
Functionality.
Structures use.
Objects design.
Objects relations.

Marmoset

Detailed information.
Language
independence.
Security and scalability
for evaluation module.
Apache 2.0 license

Any language. Standalone
Dynamic and
static analysis.

WebCat

Extensibility and
flexibility based on
plugins.
Access security.
Portability.
Semi and automatic
process.
GNU GPL license.

Java, C++,
Scheme, Prolog,
Standard ML,
and Pascal.
Flexibility for any
language.

Standalone

Code
correctness.
Completeness.
Test validity.
Extensible by
plugins.

Virtual
Programming
Lab

Moodle integration.
Customizable grading
mode.
GNU GPL license.
Plagiarism detection.
Configurable activities.
Jail environment.

Ada, C, C++,
C#, Haskell,
FORTRAN,
Java,Octave,
Pascal,PHP,
Prolog, SQL,
Ruby,Python,
Scheme,Vhdl.

Moodle
plugin.

Correctness
based on test
cases.
Open for new
methods.

Grading Tool
(Magdeburg
University)

Use of services.
Configurable evaluation
process.

Haskell,
Scheme, Erlang,
Prolog, Python,
Java.

LMS
extension.

Compilation.
Execution.
Dynamic tests.

Following the temporal comparison, almost all issues reported in the last review have been
covered, but for meta-testing. However, it does not imply that everything is worked out, as we
will discuss later on the conclusions.

There are a good number of tools for automatic assessment in programming. Then, does it
make sense to continue building new ones? Usually the main reason to build a new tool is that
the existing ones do not fulfil our requirements. If this is the case then it may be a good idea to
get the tool and extend it through a plugin.

56 http://vpl.dis.ulpgc.es/

122

Table 2. Recently developed tools.

Tool's name Main Features
Supported
Languages

Work Mode Grading Metrics

JavaBrat
Use of services.
LMS integration.

Java, Scala
Moodle
plugin.
Standalone.

Correctness.

AutoLEP
Static and dynamic
analysis to grade.

Standalone
Static analysis.
Dynamic
analysis.

Petcha

Coordination among
existing programming-
support tools.
Use of technology for
interoperability.

Languages
supported by
Eclipse and
Visual Studio

Standalone
Based on test
cases.

JAssess Moodle integration. Java
Moodle
plugin.

Compilation

RoboLIFT
Grading mobile
applications.
GUI grading.

Java Standalone
Unit testing
(public and
private)

Moodle ext.
(Slovak
University of
Technology)

Oriented for digital
systems.
Plagiarism detection.

Vhdl.
Moodle
plugin.

Compilation.
Syntactic
analysis.
Functionality by
comparison.

Table 1 shows important information that supports the reuse of tools; this is based on existing
tool features like extensibility, flexibility and configurability. The information in Table 2 shows
that Java is the most common supported language by recent tools. Older tools have already
supported this language and this cannot be a sufficient reason to build a new tool. If new
support for a given language is necessary, it can be done through adding a new submodule or
plugin to extensible tools.

An important fact is the use of LMSs in most universities. The ideal thing would be to
seamlessly use the automatic tool within the LMS. Some recent tools are considering the
integration with an LMS but they do not provide features like scalability, flexibility, and
maintainability as the older ones. Maybe the next step to evolve with automatic tools is to add
the LMS integration to the features of the more mature tools. Probably it could be reached by a
redesign of the architecture of a mature tool. It means, the architecture could consider flexibility
for the tool’s front-end. This flexibility can be reached through services. The front-end could be a
module in the LMS or a module developed in any technology for user interfaces.

Finally, it can be seen that metrics to grade are not normalized. Every tool has considered its
own set. It is a real problem, which has come about since the automatic tools have appeared.
This problem will be treated in the next section.

5. GRADING METRICS ISSUES

The lack of a common model to grade is still an important problem. First, every institution and
even every teacher has his own critter to grade an assignment. Additionally, as Rodriguez in
[19] says, it is necessary to recognize that some metrics cannot be measured. The creativity or
the right sense of a comment cannot be determined by an automatic tool. In spite of these facts,
and taking into account the importance of defining a set of metrics, a characterization of metrics
is proposed below as a first step to get a grading model.

The importance of a characterization can be inferred by seeing the Tables 1 and 2. Every tool
has its own set of metrics to establish a grade, e.g. one tool just includes the compilation, and
another considers extensibility of metrics through plugins. Additionally, some tools refer to the
same metric by different names.

Looking at all the metrics expressed in the previous tables as well as criteria from the software
engineering discipline; Table 3 shows a characterization for grading metrics.

123

Table 3. Grading metrics characterization

 Metric

Execution
Compilation

Execution

Functional Testing Functionality (system or method level)

Non
functional
Testing

Specific requirements Specific requirement for an exercise

Maintainability

Design

Style

Complexity

Efficiency

Use of physical resources

Execution times

Processes number

File or code size

Every metric could have an associated tool that evaluates it. For compilation, a language
compiler; for execution, a language interpreter; for functionality, it can be used a program based
on test cases (JUnit in Java for instance); for specific requirement, it will be necessary a
particular program; for design, style and complexity, an external program will be needed
(Checkstyle for style in Java for instance); for the last four metrics, it could be useful shell script
programs.

Some tools offer the possibility of support any grading metric through the building of plugins. But
it would be better to consider a complete evaluation process. This evaluation process would
have as feature a high level of configurability to support any metric. The goal is not see just a
metric; it is to consider the whole grading process.

6. CONCLUSIONS AND FUTURE WORK

This work has reviewed the state of the art of automatic tools for programming assignments
assessment. A set of requirements and key features for these tools has been described, and a
comparison and analysis of existing tools have been carried out. As a result, a clear snapshot of
their current status was provided, showing the lack of a common grading model as the major
issue detected. A grading metrics characterization has been proposed as a first step to get a
grading model.

The future research lines point towards the consolidation in one tool of several features like
LMS integration (without a dependency on a given one), flexibility, scalability, maintainability,
portability, and security; and the establishment of a configurable evaluation process where the
metrics can be selected as the teacher needs.

7. ACKNOWLEDGMENT

The first author would like to extend thanks to Secretaría Nacional de Educación Superior,
Ciencia, Tecnología e Innovación of the Ecuadorian Government, which provided him with
financial support during his master studies.

In addition, this work has been partially supported by the Universidad Politécnica de Madrid, as
part of the “Ayudas a la Innovación Educativa y a la Mejora de la Calidad de la Enseñanza”
programme.

REFERENCES

[1] Forsythe, G. E., Wirth, N. (1965). Automatic Grading Programs. Commun ACM, vol. 8,
pp. 275-278.

124

[2] Higgins, C. A., Gray, G., Symeonidis, P., Tsintsifas, A. (2005). Automated Assessment
and Experiences of Teaching Programming. Journal on Educational Resources in
Computing (JERIC), vol. 5, pp. 5.

[3] Choy, M., Lam, S., Poon, C., Wang, F., Yu, Y., Yuen, L. (2008). Design and
Implementation of an Automated System for Assessment of Computer Programming
Assignments. Advances in Web Based Learning–ICWL 2007, pp. 584-596.

[4] Douce, C., Livingstone, D., Orwell, J. (2005). Automatic Test-based Assessment of
Programming: A Review. Journal on Educational Resources in Computing (JERIC), vol.
5, pp. 4.

[5] Ihantola, P., Ahoniemi, T.,Karavirta, V., Seppälä, O. (2010). Review of Recent Systems
for Automatic Asessment of Programming Assignments. Proceedings of the 10th Koli
Calling International Conference on Computing Education Research, pp. 86-93.

[6] Romli, R., Sulaiman, S., Zamli, K. Z. (2010). Automatic Programming Assessment and
Test Data Generation a Review on its Approaches. Information Technology (ITSim), 2010
International Symposium, pp. 1186-1192.

[7] Edwards, S. H., Perez-Quinones, M. A. (2008). Web-CAT: AutomaticallyGgrading
Programming Assignments. ACM SIGCSE Bulletin, vol. 40, pp. 328-328.

[8] Patil, A. (2010). Automatic Grading of Programming Assignments.

[9] Rodríguez-del-Pino, J. C., Rubio-Royo, E., Hernández-Figueroa, Z. J. (2012). A Virtual
Programming Lab for Moodle with Automatic Assessment and Anti-plagiarism Features.

[10] Yusof, N., Zin, N.A.M, Adnan, N.S. (2012). Java Programming Assessment Tool for
Assignment Module in Moodle E-learning System. Procedia-Social and Behavioral
Sciences 56 (56), pp. 767-773.

[11] Queirós, R. A. P., Leal, J. P. (2012). PETCHA: A Programming Exercises Teaching
Assistant. Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education, pp. 192-197.

[12] Amelung, M., Forbrig, P., Rösner, D. (2008). Towards Generic and Flexible Web
Services for E-assessment. ACM SIGCSE Bulletin, pp. 219-224.

[13] Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., Padua-Perez, N.
(2006). Experiences with Marmoset: Designing and Using an Advanced Submission and
Testing System for Programming Courses. ACM SIGCSE Bulletin, vol. 38, pp. 13-17.

[14] Allevato, A., Edwards, S.H. (2012). RoboLIFT: Engaging CS2 Students with Testable,
Automatically Evaluated Android Applications. Proceedings of the 43rd ACM technical
symposium on Computer Science Education, pp. 547-552.

[15] Higgins, C., Symeonidis, P., Tsintsifas, A. (2002). Diagram-based CBA Using DATsys
and CourseMaster. Proceedings of Computers in Education International Conference, pp.
167-172.

[16] Wang, T., Su, X., Ma, P., Wang, Y., Wang, K. (2011). Ability-training-oriented Automated
Assessment in Introductory Programming Course. Computer. Education, Elsevier, vol. 56,
pp. 220-226.

[17] Leal, J., Silva, F. (2003). Mooshak: a Web‐based Multi‐site Programming Contest
System. Software: Practice and Experience, vol. 33, pp. 567-581.

[18] Jelemenská, K. Čičák, (2012). Improved Assignments Management in MOODLE
Environment. INTED2012 Proceedings, pp. 1809-1817.

[19] Rodríguez del Pino, J. C., Díaz Roca, M., Hernández Figueroa, Z., González Domínguez,
J. D. (2007). Hacia la Evaluación Continua Automática de Prácticas de Programación.
Actas De Las XIII Jornadas De Enseñanza Universitaria de la Informática, pp. 179-186.

125

Annex II: Description of important methods in the classes

Orchestrator, CommandExecutor and

GradingSumoduleProgram

126

Orchestrator class

Orchestrator

public Orchestrator(java.lang.String confFilename)

It instantiates a new Orchestrator given the name of the XML configuration file.

Parameters:

confFilename - the configuration filename

fillSubmissionConf

public boolean fillSubmissionConf()

It fills data in the submissionConf instance through mapping provided by JAXB and

using the SubmissionConf and GradingSubmoduleConf classes.

Returns:

true if the submissionConf object was filled successfully

createGSubmoduleProgramInstance

public java.lang.Object createGSubmoduleProgramInstance(

java.lang.String className,

es.upm.dit.tfm.grad.pars.GradingSubmoduleConf gradingSubmoduleConf)

It creates a class instance in the runtime given its name as String and using Java

Reflection technology57. This instance will receive a GradingSubmoduleConf instance

used to read, and then to update, data needed by the grading-submodule associated

program. The instance created is returned as an object. Its correspondent class extends

the GradingSubmoduleProgram abstract class.

Parameters:

className - the class name

gradingSubmoduleConf - the GradinSumoduleConf instance

Returns:

The object just instantiated

57 http://docs.oracle.com/javase/tutorial/reflect/index.html

127

invokeRunMethod

public void invokeRunMethod(java.lang.Object gradingSubmoduleProgram)

This is implemented using Java Reflection technology. It invokes a method called

run associated to an object received as argument. This object should be an instance of a

GradingSubmoduleProgram subclass. The run method is defined in the

GradingSubmoduleProgram abstract class and has to be implemented in its subclasess.

Parameters:

gradingSubmoduleProgram - the object that owns the run method to be invoked

orchestrate

public void orchestrate()

It orchestrates the process. Based on the list of GradingSubmoduleConf inside the

submissionConf instance, this will call the run method of every grading-submodule

associated program. Specifically it will create an instance of a

GradingSubmoduleProgram subclass and then it will invoke the run method inside that

instance.

finalProcessing

public void finalProcessing()

It makes the final processing with the execution results of every grading-submodule

program. This includes the calculation of the final grade, the collection of the detailed

comments, and the creation of a general comment.

printResponse

public void printResponse()

It prints the response in a format, which allows being interpreted by the Jail server

program before send it in an HTTP response. The response includes the final grade, the

general comment and the detailed comments previously generated.

getLogCode

public java.lang.String getLogCode()

128

It creates a log code. This includes a student identificator, an activity identificator

and a code for the submission.

Returns:

The log code

CommandExecutor class

CommandExecutor

public CommandExecutor(java.lang.String oneLineCommand)

It instantiates a new CommandExecutor given a system command expressed in 1 line.

Parameters:

oneLineCommand - a system command expressed in one line

execute

public void execute()

 throws java.io.IOException,

 java.lang.InterruptedException

It executes a command list and catches information from the standard output and

from the standard error. This information is saved inside the object. This method

throws some exceptions in this level, which will be caught by the orchestrator. This last

will save a log with the incidences.

Throws:

java.io.IOException - Signals that an I/O exception happened.

java.lang.InterruptedException - Signals that an interruption exception

happened.

GradingSumoduleProgram class

GradingSubmoduleProgram

public GradingSubmoduleProgram(

es.upm.dit.tfm.grad.pars.GradingSubmoduleConf gradingSubmoduleConf)

It instantiates creates a new GradingSubmoduleProgram subclass.

Parameters:

gradingSubmoduleConf - the GradingSubmoduleConf instance associated.

129

run

public abstract void run()

It contains code written by the administrator or the teaching staff, which aims to

evaluate source code files considering a grading criterion. It is possible to use any

commands but finally it is necessary updating the GradingSubmoduleConf instance. It is

suggested using the methods of the GradingSubmoduleConf class to recover the

parameters and the action file list, and the methods defined in this class to save

implementation time of new subclasses.

updateGradingSubmoduleConf

public void updateGradingSubmoduleConf(java.lang.String state,

 double grade,

 java.lang.String comments)

It updates the GradingSubmoduleConf associated.

Parameters:

state - The state of the program's execution

grade - The grade assigned to the source code considering the associated criterion.

comments - The comments regarding the evaluation and considering the associated

criterion.

executeCommand

public void executeCommand(java.lang.String command)

It executes one line command. It makes automatically an instantiation of

CommandExecutor and calls the execution method. It catches exceptions and

additionally identifies errors from the standard error. The exceptions and error are

written in the log file.

Parameters:

command - the one line command

stdOutString

public java.lang.String stdOutString()

130

It gets the standard output of the command execution as String.

Returns:

The standard output as String

stdErrString

public java.lang.String stdErrString()

It gets the standard error of the command execution as String.

Returns:

The standard error as String

getLogCode

public java.lang.String getLogCode()

It gets the log code.

Returns:

The log code

131

Annex III: Detailed description of the case studies (in Spanish)

!"#$%&$#'()'$"*#$&+,'-*'$.#/*/

!"#$%&'()

* +,$-.&/012$1.3-)$)415)(12$1-,,-6)161)$0%$0.&-)12$1.(0%,(3

7(.58$0%()1619&.:$,()1;,(;(,.&(0-2()

<$1;,(;(,.&(0-=

* >&.:$,(1 .(01 .(8$0%-,&() 1 2$ 1 3-) 1 .3-)$) 1 C o o r d e n a d a E s f e r i c a ,

CoordenadaCartesiana 6 SateliteGPS.

* >&.:$,(1.(0150-1;3-0?33-12$13-1.3-)$1ReceptorGPS1

@.%&'&2-2$)1-12$)-,,(33-,

+,$-.&/012$13-)1.3-)$)1+((,2$0-2-A)9$,&.-41

+((,2$0-2-+-,%$)&-0-161<-%$3&%$BC<

A3 1./2&D(12$ 13-) 1.3-)$)1+((,2$0-2-A)9$,&.-41 +((,2$0-2-+-,%$)&-0- 161 <-%$3&%$BC<1)$1

;,(;(,.&(0-1-3 1-3580(E1 F(1$) 10$.$)-,&(18(2&9&.-,1 $)%-)1 .3-)$)E1 1 A01 $)%- 1;,&8$,-1

-.%&'&2-21:-61G5$=

HE +,$-,1501;,(6$.%(133-8-2(1p3

IE +,$-,1501;-G5$%$133-8-2(1es.upm.dit.prog.p3

JE K0.(,;(,-,1 3-)1 .3-)$)1 CoordenadaEsferica, CoordenadaCartesiana y

SateliteGPS41-1;-,?,12$13()1L.:$,()1;,(;(,.&(0-2()E

ME N$$,13-12(.58$0%-.&/012$13-)1.3-)$)1;-,-1.(0(.$,13()18O%(2()12&);(0&"3$)E

+,$-.&/012$13-1.3-)$1P$.$;%(,BC<

A)%- 1.3-)$ 1D$)%&(0-1501.(0#50%(12$ 1)-%O3&%$) 1BC<12$%$.%-2() 161G5$1)$1$8;3$-,Q01;-,-1

2$%$,8&0-,1 3- 1;()&.&/01 $R-.%-1 2$1 501 ("#$%(E1 <$ 1 2$.3-,-,Q1 501 -,,-61 $01 $31 G5$ 1)$1

-38-.$0-01 3() 1)-%O3&%$)E1 A3 1 0S8$,(1 8QR&8(1 2$1)-%O3&%$) 1 $) 1 50-1 .(0)%-0%$1

TN_MAX_SATELITESU41.56(1'-3(,1)$,Q1VE1

<$ 1;,(;(,.&(0- 150-1;3-0%&33-12$ 13-1.3-)$1ReceptorGPS41G5$ 1&0.356$13-) 1)&D0-%5,-) 12$1

3()18O%(2()1-1,$-3&W-,E1K0.356$15018O%(2(1TtoStringU1G5$1,$%(,0- 1501String1.(013()1

;-,Q8$%,() 12$ 13() 1)-%O3&%$) 1$015018(8$0%(12-2(E1 <$1;5$2$ 1$8;3$-,1 ;-,-1D0,-,1

%,-W-)E

<12"012)-,,(33-,13()1)&D5&$0%$)18O%(2()=

'!"01'!234546'(
1786'9:;'#;7<=> ?

anadirSatelite

<&D0-%5,-=1public void anadirSatelite(SateliteGPS unSatelite)

7$).,&;.&/0=1A)%$18O%(2(1-X-2$1501)-%O3&%$E1<& 16-1)$ 1:- 1-X-2&2(1$310S8$,(18QR&8(1

2$1)-%O3&%$)41)$1 2$"$1 2$).-,%-,1 $31)-%O3&%$ 18Q) 1 3$#-0(1 ,$);$.%(1 - 1 3- 1 ;()&.&/01 2$31

,$.$;%(,E

AR.$;.&(0$)=

* <&1 $3 1 '-3(,1 2$3 1 ;-,Q8$%,(1 $) 1 053341)$ 1 2$"$1 3'-,1 3- 1 $R.$;.&/01

F533C(&0%$,AR.$;?(0

* <& 16- 1)$1:- 1-X-2&2(1$31)-%O3&%$1G5$1)$ 1;-)- 1.(8(1;-,Q8$%,(41)$12$"$ 1$3$'-,1 3-1

$R.$;.&/01AR.$;?(0

getNumeroSatelites

<&D0-%5,-=1public int getNumeroSatelites()

7$).,&;.&/0=1P$%(,0-1$310S8$,(12$1)-%O3&%$)1-38-.$0-2()E

eliminarSatelite

<&D0-%5,-=1public void eliminarSatelite(SateliteGPS unSatelite);

7$).,&;.&/0=1A)%$18O%(2(1$3&8&0-1501)-%O3&%$E

AR.$;.&(0$)=

* <&1 $3 1 '-3(,1 2$3 1 ;-,Q8$%,(1 $) 1 053341)$ 1 2$"$1 3'-,1 3- 1 $R.$;.&/01

F533C(&0%$,AR.$;?(0

* <& 1$3 1)-%O3&%$1G5$1)$1;-)- 1.(8(1;-,Q8$%,(10(1)$1:-1-X-2&2(1;,$'&-8$0%$41)$1

2$"$1$3$'-,13-1$R.$;.&/01AR.$;?(0

estaSatelite

<&D0-%5,-=1public boolean estaSatelite(SateliteGPS unSatelite)

7$).,&;.&/0=1 A)%$18O%(2(1&02&.-1)& 1501)-%O3&%$19(,8-1;-,%$12$13() 12$%$.%-2()1;(,1$31

,$.$;%(,E1 1 C-,- 1$)%-1.(8;,("-.&/01)$15%&3&W-,Q 1S0&.-8$0%$ 1$3 10(8",$12$3 1)-%O3&%$1

T-%,&"5%(10(8",$12$13-1.3-)$1<-%$3&%$BC<41,$.5;$,-"3$1.(01$318O%(2(1D$%F(8",$UE

AR.$;.&(0$)=

* <&1 $3 1 '-3(,1 2$3 1 ;-,Q8$%,(1 $) 1 053341)$ 1 2$"$1 3'-,1 3- 1 $R.$;.&/01

F533C(&0%$,AR.$;?(0

'!"01'!234546'(
1786'9:;'#;7<=> @

getDistanciaSateliteMasCercano

<&D0-%5,-=1public double getDistanciaSateliteMasCercano()

7$).,&;.&/0=1+-3.53- 13-12&)%-0.&- 1-13- 1G5$1)$ 1$0.5$0%,- 1$31)-%O3&%$ 18Q)1.$,.-0(12$13-1

;()&.&/012$31,$.$;%(,E11

AR.$;.&(0$)=

* <&10(1)$1:-01-X-2&2(1)-%O3&%$)1-31,$.$;%(,41)12"$1$3$'-,13-1$R.$;.&/01AR.$;?(01

getDistanciaSateliteMasCercano

<&D0-%5,-=1public double getDistanciaSateliteMasCercano

 (CoordenadaEsferica unaPosicion)

7$).,&;.&/0=1+-3.53- 13- 12&)%-0.&- 1-13- 1G5$ 1)$1$0.5$0%,- 1$31)-%O3&%$18Q) 1.$,.-0(1- 150-1

;()&.&/01G5$1)$1;-)-1.(8(1;-,Q8$%,(E1

AR.$;.&(0$)=

* <&1 $3 1 '-3(,1 2$3 1 ;-,Q8$%,(1 $) 1 053341)$ 1 2$"$1 3'-,1 3- 1 $R.$;.&/01

F533C(&0%$,AR.$;?(0

* <&10(1)$1:-01-X-2&2(1)-%O3&%$)1-31,$.$;%(,41)12"$1$3$'-,13-1$R.$;.&/01AR.$;?(0

A'-35-.&/0

N-1$'-35-.&/01)$1"-)-,Q1$013()1)&D5&$0%$)1-);$.%()=

* $>22:44AB=' 9:' ":4:CD>21!/EF6G6=1 @1 3- 1.3-)12)-,,(33-2-1;(,1 $3 1-3580(1)$ 1 3$1

;-)-,Q 150-1"-%$,Y- 12$ 1;,5$"-) 1;-,-1.(8;,("-,1)51.(,,$.%(1950.&(0-8&$0%(E1N-1

.3-)$1 2$)-,,(33-2- 1 2$"$1 .58;3&,1 3- 1 $);$.&L.-.&/01 2$1 3-1 .3-)$1 ,9,$0%$1 - 1 3-)1

950.&(0$)1-1,$-3&W-,161-13-)1$R.$;.&(0$)1G5$1)12"$013-0W-,E

* A) 10$.$)-,&(1H:I7A2' ;6H' A=9A464A>=:H1 $01.5-0%(1-10(8",$)12$1 3() 18O%(2() 12$1

;,5$"-41 0(8",$1 2$3 1 L.:$,(1 - 1 $0%,$D-,1 61 $)%,5.%5,-1 2$1 2&,$.%(,&()E1 A31

&0.58;3&8&$0%(12$1$)%-)10(,8-)1)5;(02,Q 150- 1J6F696'9:'6;'<:=>H'K'C7=D>HE1<&1
3-1;,Q.?.-10(1.(8;&3-1.(,,$.%-8$0%$10(1)$1$'-35-,QE

A0%,$D-12$13-1;,Q.%&.-

K0)%,5..&(0$)1;-,-13-1$0%,$D-12$13-1;,Q.%&.-=

* N-1;,Q.?.-1)12"$,Q1$0%,$D-,1$01$3 18((23$1D3("-3 12$ 13- 1-)&D0-%5,-1-0%$) 12$13-)1

IJ=VZ12$312Y-1HH12$1-",&312$1I[HIE

* A310(8",$12$13-1$0%,$D-1$)1\C,Q.?.-1J]

'!"01'!234546'(
1786'9:;'#;7<=> (

* A3 1 0(8",$1 2$31 L.:$,(1 G5$ 1 &0.356- 1 3() 1 L.:$,()1 ,$G5$,&2()1)$ 1 2$"$1 33-8-,1

\practica3.zip”.

* !"#$%&' ()*+,*=1 :-61 G5$1 $0%,$D-,1 $31 L.:$,(1 2$1 3- 1 .3-)$1 2$)-,,(33-2-1

ReceptorGPS.javaE1

* A3 1.(0%$02&2(12$31L.:$,(1.(8;,&8&2(12$ 13-1$0%,$D-12$"$1$)%-,1$01$3 12&,$.%(,&(1

,$3-?'(=1\;J^),.^$)^5;8^2&%^;,(D^;J^]E

* A3 1./2&D(1;,(;(,.&(0-2(41)12"$1.(8;&3-,1)&01$,,(,$)E1<$1'-3(,-,Q 13- 1-5)$0.&- 12$1

-'&)() 1 T_-,0&0D)UE1 F(1)$1 2$"$1 8(2&L.-,1 3- 1)&D0-%5,- 1 2$1 3() 1 8O%(2()1

;,(;(,.&(0-2()1 $01 3- 1 ;3-0?33-E1 A01 .-)(1 .(0%,-,&(41)$ 1 ;,(25.&,Q01 $,,(,$)1 2$1

.(8;&3-.&/01-31;-)-,13-1"-%$,Y-12$1;,5$"-)E

L *;' D26J6F>' :H' A=9AGA976;E' .6' 4>CA6' 9:' :=D2:I6H' H7C>=923' :;' H7HC:=H>' :=' ;6'
6HAI=6D726'9:' M>2<6'67D><3546N' D6=D>' C626' O7A:=' 4>CA6' 4><>' C626'O7A:=' H:'
9:F6'4>CA62E'/:'2:47:296'O7:':HD3'C:2<A59>)

✓ 7&).5?,1$31%,-"-#(1.(01(%,()`

✓ -652-,1-1(%,()1-12$;5,-,1)51%,-"-#(`

✓ 5)-,1./2&D(1;5"3&.-2(1$01$31)&?(1_$"12$13-1-)&D0-%5,-`

✓ 5)-,1./2&D(1;5"3&.-2(1$01(%,()1)&?()41.&%-02(13-1;,(.$2$0.&-E

!>2':;'4>=D262A>N'=>':HD3'C:2<ADA9>)

✓ P$-3&W-,1$31%,-"-#(1$01D,5;(`1

✓ .(;&-,1 $3 1%,-"-#(12$ 1(%,(1-3580(41 0& 1;$,8&?,1 3- 1.(;&- 12$3 1;,(;&(1%,-"-#(41 0&1

)&G5&$,-1;-,.&-38$0%$E1

✓ 5)-,1./2&D(1;5"3&.-2(1)&01.&%-,1$31(,&D$0E1

A3 1%,-"-#(12$"$ 1)$,1,$-3&W-2(1&02&'&25-38$0%$161$0%,$D-2(1;$,)(0-38$0%$1;(,1

$31-3580(1)$DS01)$1:-1&02&.-2(E1

'!"01'!234546'(
1786'9:;'#;7<=> K

 PROG Práctica 5

 Guía del Alumno 1

Práctica 5: Relaciones entre clases y

colecciones

Objetivos

· Uso de herencia y polimorfismo.

· Uso de bibliotecas: Colecciones, Conjuntos y Listas.

· Uso de arrays.

· Documentación del código: javadoc.

Documentación

Se proporciona:

· Fichero con código fuente y comentarios de las clases

CoordenadaCartesiana, POI, Gasolinera y Hotel.

Actividades a desarrollar

En esta práctica el alumno deberá crear una clase llamada NavegadorGPS, para

simular algunas de las funciones comunes de un navegador. En particular, nos

centraremos en la gestión de una lista de Puntos de Interés (Point of Interest – POI).

Un POI viene definido por un nombre, que es una cadena de texto con el nombre

del establecimiento que representa, y una localización que indica la posición en el

espacio del POI, expresada en coordenadas cartesianas.

Hay distintos tipos de POIs, como gasolineras y hoteles. Estas abstracciones se

modelan en la práctica con dos clases particulares, que extienden las propiedades

de un POI genérico:

· Gasolinera: Esta clase almacena información sobre el tipo de combustible

que se puede encontrar: hasDiesel y hasSinPlomo, que devuelven un

booleano que indica si la gasolinera surte ese tipo de combustible o no.

· Hotel: Esta clase almacena información sobre establecimientos hoteleros,

su precio y su categoría. En particular, dispone de métodos para conocer las

estrellas (getEstrellas) y el precio (getPrecio) del hotel.

 PROG Práctica 5

 Guía del Alumno 2

Creación de las clases CoordenadaCartesiana, POI,

Gasolinera y Hotel

El código de las clases CoordenadaCartesiana, POI, Gasolinera y Hotel se puede

encontrar en un fichero adjunto. En esta primera actividad hay que:

1. Crear un proyecto Java llamado p5

2. Crear dentro del proyecto un paquete llamado es.upm.dit.prog.p5

3. Incorporar las clases ofrecidas al paquete es.upm.dit.prog.p5 del proyecto

p5

Creación de la clase NavegadorGPS

El alumno deberá crear la clase NavegadorGPS para gestionar la información

sobre diversos POIs. En particular, la clase NavegadorGPS debe disponer, al menos,

de los siguientes métodos públicos, con el comportamiento que se detalla a

continuación de cada método:

· public NavegadorGPS ()

o Crea un objeto NavegadorGPS. La localización del navegador se

establecerá por defecto en la CoordenadaCartesiana 0, 0, 0, y no habrá

almacenados POIs.

· public void setPosicion(CoordenadaCartesiana p) throws Exception

o Fija una nueva localización para el NavegadorGPS.

o Excepciones: El método deberá elevar excepciones de tipo Exception en

los siguientes casos:

§ El argumento pasado es nulo.

· public CoordenadaCartesiana getPosicion()

o Recupera la posición del NavegadorGPS.

· public void setPOIs(POI[] nuevosPOI) throws Exception

o Sustituye los POIs almacenados por los pasados como parámetro.

o Excepciones: El método deberá elevar excepciones Exception en los

siguientes casos. La lista existente de POIs no se debe modificar si

ocurre alguna excepción:

§ Alguno de los elementos de nuevosPOI es nulo.

§ El argumento nuevosPOI recibido es nulo.

· public void setPOIs(Set<POI> nuevosPOI) throws Exception

o Se espera el mismo comportamiento que para el método anterior.

· public void setPOIs(List<POI> nuevosPOI) throws Exception

o Se espera el mismo comportamiento que para el método anterior.

· public void addPOI(POI nuevoPOI) throws Exception

o Añade el POI nuevoPOI a los POIs almacenados.

o Excepciones: El método deberá elevar excepciones Exception en los

siguientes casos. La lista existente de POIs no se debe modificar si

ocurre alguna excepción:

§ El argumento nuevoPOI recibido es nulo.

 PROG Práctica 5

 Guía del Alumno 3

§ El argumento nuevoPOI recibido ya se encuentra entre los POIs

almacenados.

· public void removePOI(POI viejoPOI) throws Exception

o Elimina el POI viejoPOI de los POIs almacenados.

o Excepciones: El método deberá elevar excepciones Exception en los

siguientes casos. Los POIs almacenados por el NavegadorGPS no se debe

modificar si ocurre alguna excepción:

§ El argumento viejoPOI recibido es nulo.

· public POI[] getPOIs()

o Devuelve un array de POIs, con los POIs almacenados en el objeto. Si no

hubiera POIs almacenados deberá devolver un array sin elemento, pero

nunca un objeto null.

· public Gasolinera[] getGasolineras()

o Devuelve un array de Gasolineras, con las Gasolineras almacenadas en el

objeto.

· public Hotel[] getHoteles()

o Devuelve los Hoteles almacenados por el navegador.

· public Gasolinera getGasolineraMasCercana()

o Devuelve la Gasolinera más cercana al NavegadorGPS de entre todas las

almacenadas.

· public Gasolinera[] getGasolinerasDiesel()

o Devuelve un array de Gasolineras con las Gasolineras que ofrecen

combustible diesel.

· public Hotel[] getHotelesCercanos(int distanciaMaxima)

o Devuelve un array de Hotel con los hoteles que se encuentran a una

distancia inferior que la pasada como parámetro.

· public Hotel[] getHotelesBuenos(int estrellasMinimas)

o Devuelve un array de Hotel con los hoteles que tienen un número de

estrellas igual o mayor al pasado como parámetro.

La corrección del código desarrollado se valorará hasta con 8 puntos en la
calificación de la práctica. Puede usar el corrector que está disponible en el área

de entrega para tener una idea de la corrección de su código, aunque la calificación

obtenida por este método puede no ser definitiva, ya que estará sujeta a una

revisión posterior.

Documentación de la clase NavegadorGPS

El alumno deberá documentar de forma adecuada la clase NavegadorGPS,

incluyendo comentarios para la clase, los atributos y los métodos desarrollados.

Para ello deberá hacer uso de distintas etiquetas javadoc.

La sintaxis de javadoc es estricta. Es necesario seguirla para que la documentación

generada tenga la información tal y como la esperan los lectores. Es necesario

comentar todos los métodos, incluido el constructor. En particular, se deben

incluir las siguientes etiquetas, con el correspondiente formato:

• @author nombre_autor

 PROG Práctica 5

 Guía del Alumno 4

• @version identificador_versión

• @param nombre_parámetro texto_del_comentario

• @throws nombre_excepción texto_del_comentario

• @return texto_del_comentario

• El comentario de la funcionalidad de una clase, no lleva etiqueta y es

aconsejable que acabe con un punto.

A continuación se comentan algunos fallos comunes y la forma de realizarlos

correctamente:

• Se deben utilizar las etiquetas tal y como se han definido previamente. El

uso de otras (Ej. @autor en lugar de @author) no está permitido. Su uso

provocará que se penalice la calificación obtenida por el alumno.

• No se deben añadir caracteres a los nombres de excepción o de parámetro.

Ej. No incluir comentarios como: “@param unPunto. texto”. Se debe

eliminar el punto después del nombre del parámetro.

• Indicar el tipo de la excepción. Un comentario incorrecto sería “@throws

texto_comentario”. Es necesario poner el tipo de la excepción. Un ejemplo

correcto es: “@throws Exception texto_comentario”. Lo mismo es aplicable

a @param.

• No es recomendable poner varios comentarios “@throws Exception ...” para

el mismo método cuando se puede elevar por diferentes causas. Poner una

sola etiqueta y explicar las distintas razones que pueden elevarla.

• No utilizar nombres de excepciones que no se usan, aunque sea con fines

aclaratorios. Por ejemplo, no incluir comentarios del tipo “@throws

Fuera“, sin que este sea el nombre real de la excepción. De lo contrario el

analizador interpreta que se hace un uso incorrecto de la etiqueta, lo que

penaliza la calificación del alumno.

• Incluir comentario javadoc en el constructor.

La presencia y adecuación de los comentarios se valorará hasta con 2 puntos en

la calificación de la práctica. Puede usar el corrector que está disponible en el

área de entrega para tener una idea de la corrección de la documentación de su

código, aunque la calificación obtenida por este método puede no ser definitiva, ya

que estará sujeta a una revisión posterior.

Creación de la clase de prueba PruebaNavegadorGPS

El alumno deberá crear una clase para realizar pruebas que verifiquen el correcto

funcionamiento de NavegadorGPS. Su contenido, como en las prácticas anteriores,

es un método main con instrucciones para llamar a los métodos de la clase a

probar. El resultado de las llamadas a los métodos se puede escribir en la salida

estándar para comprobar su correcto funcionamiento.

De forma complementaria, el alumno puede depurar su código para detectar los

errores que pudiera haber detectado. En la página de la asignatura, dispone de

varios tutoriales que le explican cómo depurar un programa, depuración de arrays,

y uso de interfaces y herencia:

 PROG Práctica 5

 Guía del Alumno 5

· https://moodle.lab.dit.upm.es/moodle/mod/url/view.php?id=4937

· https://moodle.lab.dit.upm.es/moodle/mod/url/view.php?id=5066

· https://moodle.lab.dit.upm.es/moodle/mod/url/view.php?id=5079

La evaluación de la práctica se basará en la ejecución de multitud de pruebas

exhaustivas a los distintos métodos implementados por el alumno, utilizando para

ello una clase similar. También se revisará la existencia y adecuación de la

documentación del código.

Entrega de la práctica

Instrucciones para la entrega de la práctica:

· La práctica se deberá entregar en el moodle de la asignatura antes de las

23:59 del martes 22 de mayo de 2012

· El nombre de la zona de entrega es “Práctica 5”. Esta zona de entrega

dispone de una herramienta que le sugerirá posibles fallos en su código.

· Código fuente: Hay que entregar los ficheros fuente de la clase

NavegadorGPS.

· El código fuente debe estar en el directorio relativo

“p5/src/es/upm/dit/prog/p5”. No es necesario entregar los ficheros .class.

· El fichero que hay que entregar se genera como sigue:

1. Seleccionar el proyecto p5.

2. Seleccionar la opción de menú “File”, luego seleccionar “Export”.

3. En la ventana que aparece, seleccionar “General->Archive File”.

Pinchamos en ‘Siguiente’.

4. En la ventana que aparece, asegurarse de dar el nombre adecuado al

fichero de salida: Practica5. No utilice tildes ni espacios en blanco

para el nombre del fichero de salida. De lo contrario el sistema

podría no detectar su entrega. Asegurarse también de que está

seleccionado:

§ El proyecto p5, y dentro del proyecto p5 la carpeta src.

§ salvar en formato zip y,

§ crear estructura de directorios.

· La evaluación se centrará en la corrección de los métodos desarrollados en

la clase NavegadorGPS, y en la existencia y adecuación de comentarios en

esta clase.

· El código entregado debe poderse compilar sin errores. No utilizar tildes

ni ñ para el nombre de los métodos o atributos. En caso contrario el

corrector no funcionará.

AVISO MUY IMPORTANTE: Se recuerda a los alumnos que el trabajo es
individual, y que la copia de entregas supondrá el suspenso en la asignatura

de forma automática, tanto para quien copia como para quien se deja copiar.

Se recuerda que está permitido:

• Discutir el trabajo con otros;

 PROG Práctica 5

 Guía del Alumno 6

• ayudar a otros a depurar su trabajo;

• usar código publicado en el sitio web de la asignatura;

• usar código publicado en otros sitios, citando la procedencia.

Por el contrario, no está permitido:

• Realizar el trabajo en grupo;

• copiar el trabajo de otro alumno, ni permitir la copia del propio trabajo, ni

siquiera parcialmente.

• usar código publicado sin citar el origen.

El trabajo debe ser realizado individualmente y entregado personalmente por el

alumno según se ha indicado.

