
SFDL: MVC APPLIED TO WORKFLOW DESIGN 

Diego Moreno, Emilio García, Sandra Aguirre, Juan Quemada 
Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid 

Avenida Complutense, 30 – 28040 Madrid – SPAIN 

{dmoreno, egarcia, saguirre, jquemada}@dit.upm.es 

ABSTRACT 

Process management based on workflow systems is a growing trend in collaborative environments. One of the most 

notorious areas of improvement is that of user interfaces, especially since business process definition languages do not 

address efficiently the point of contact between workflow engines and human interactions. With that in focus, we propose 

the MVC pattern design to workflow systems. To accomplish this, we have designed a new dynamic view definition 

language called SFDL, oriented towards the easy interoperability with the different workflow definition languages, while 

maintaining enough flexibility to be represented in different formats and being adaptable to several environments. To 

validate our approach, we have carried out an implementation in a real banking scenario, which has provided continuous 

feedback and enabled us to refine the proposal. The work is fully based on widely accepted and used web standards 

(XML, YAML, JSON, Atom and REST). Some guidelines are given to facilitate the adoption of our solution.  

KEYWORDS 

Model-View-Controller (MVC), Workflow, Open Architecture, Group Management, Collaborative Environment, User 

Interface, SFDL 

1. INTRODUCTION 

Collaborative Working Environments play an increasingly important role for successful business, usually 

involving teams across organizations. Nowadays, people in those teams have frequently to face the challenge 

of being geographically spread, and they just want to avoid the necessity of physically meeting to carry out 

their duties. In this context, computer assisted workgroup management becomes notably relevant. Moreover, 

some specific technologies, such as those supporting a distributed workflow execution, turn out to be crucial: 

any optimization in those techniques multiplies enormously the benefits obtained by applying them to the 

collaboration between individuals and workgroups. 

Team management exposes the critical nexus between the human web and the web of data and services; it 

raises the need of open architectures that enable interoperability and interaction among all the elements 

composing a virtual organization, i.e. the cooperation of individuals belonging to different entities, 

companies, departments or projects. This is achieved by using open and standard protocols, interfaces, and 

definition languages. 

The work described in this paper proposes the Model-View-Controller architecture (MVC) (Krasner & 

Pope 1988), as a means of achieving an integrated solution to define a user interface –the view-, ideally web-

form based, together with a number of workflow processes that will handle all the logic –the controller-, and 

providing access to the data –the model-. At this point, two particularities must be taken into account: first of 

all, workflow engines can be found in quite different environments, ranging from human interaction through 

web-based environments to machine-to-machine communications using Web Services. Second place, user 

interfaces should be able to integrate in complex systems, such as workflows. They should have the 

possibility, for example, of executing functions to obtain information from the workflow engine. 

Workflow definition languages –BPEL (Andrews, et al., 2003), XPDL (Workflow Management Coalition 

2002)- usually take care of providing the logic behind the processes, lacking the capability of defining user 

interfaces. This ability is delegated to other languages, such as HTML or XForms in the case of web 

environments. Having analysed different user interface definition languages which can be used in this MVC 

approach, our study concluded that none of them was optimised for workflow environments. Therefore, we 



studied the creation of a view definition language which allowed for the dynamic generation of user 

interfaces, while seamlessly integrating in a workflow execution engine. This language, the Simple Form 

Definition Language (SFDL) (Moreno, et al., 2009) has two main characteristics: 

 It has three alternative representations: XML, YAML (Ben-Kiki, et al., 2005) and JSON 

(Crockford, 2006), which contribute to its adaptability, making it optimum for several scenarios. 

 It integrates server-side function execution, enabling interoperation with the workflow engine 

logic, and adding to the dynamic aspect of the language. 

Current article goes beyond the formal specification of the language, proposing an integration path for 

SFDL into a generic workflow enactment service. As a means of validating the proposal, we have carried the 

implementation in a particular research project, a software development platform in a banking environment, 

where a significant number of professionals actively use workflows to coordinate themselves in their day-to-

day activities. Thus, this proposal has benefited and been refined from real world feedback; the banking 

process requirements have established the basis to our work: workflows should be defined nimbly, providing 

the designers with the control over all the workflow development process, from functionality to end-user 

interface design. The proposal is completely compatible with the Reference Model (Hollingsworth, 1994) 

from WfMC, guaranteeing a straightforward integration in compliant systems. It is based on standards such 

as Atom (Sayre, 2005), REST (Fielding, 2000) and Wf-XML-R (Zukowski, et al., 2008). 

The remainder of this paper is organized as follows: Section 2 describes the related works. The 

methodology followed is introduced in Section 3, along with the requirements that served as a starting point 

to the approach. Section 4 describes the proposed language, SFDL. Section 5 provides some guidelines for 

SFDL adoption, before concluding with Section 6. 

2. RELATED WORKS 

Workflow systems, as expressed by the WfMC Reference Model, are strongly influenced by the 

languages and protocols chosen for its interfaces. Process definition languages play a role as the common 

format for the workflow definition interchange between the process definition tools and the runtime 

workflow management. For this work, we have considered several standards: BPEL is the OASIS proposal 

for this interface, oriented to Web Services interactions; XPDL is the XML process definition language 

proposed by the WfMC, and adds both graphics and semantics to the business process representation. Other 

alternatives include UML, which a more general-purpose orientation, or OpenWFE (Wohed, et al., 2009), 

which leads among open-source alternatives. It must be noted that the extensions proposed in our work are 

oriented towards the View component of the suggested MVC approach, therefore being completely valid for 

any of the definition languages. 

Forms are the primary means for creating interactive web-based user interfaces. Different ways to 

generate Web forms are available, but currently there is a demand for dynamism, which plain static HTML 

pages lack. XForms (Dubinko, et al., 2003) is a recommendation of the W3C, within XHTML specification, 

that separates presentation from content, allows reuse, gives strong typing –reducing the number of round-

trips to the server- and offers device independence and a reduced need for scripting. Nonetheless, its support 

in actual web browsers is practically inexistent and, while being based on XML, it needs the support of other 

languages -CSS for styling, XSLT for dynamic form generation-; its complexity is non-trivial for workflow 

process designers. HTML 5.0 Forms (Hickson, 2009) has an increasing support in browsers, aiming to reduce 

the need for other proprietary, but popular solutions, such as MXML(Coenraets, 2003); however, its forms 

cannot be easily serialized to be processed in other languages, such as JavaScript, and does not provide 

advanced function support (e.g. does not include nested functions calls). 

Our proposal for dynamic view generation must overcome the abovementioned limitations, with a 

primary focus on the integration with any of the definition languages that a workflow designer might choose. 

3. METHODOLOGY 

Our scenario is developed into the ITECBAN project, which is aimed at providing the banking core 

building process with software tools oriented towards the collaborative activities of a Virtual Organization. 



ITECBAN must support different collaborative activates such as the software development process inside a 

banking core, videoconference, content management, etc. Taking into account the target scenario for this 

project, the workflow management system had to satisfy, at least, the following functional requirements: 

 Design of forms which allow the specification of tasks and rules, including the user’s roles 

needed for their execution and the input and output data types. 

 User access through any web browser. 

 Easy creation of new flows. 

 Use of an open source workflow management system. 

 Connection with different databases as MySQL, LDAP and CMDB 

 Workflow management of incidences, changes, problems and job orders. 
In order to identify the variables, policies, roles, process and components that should be taken into account 

in the workflow management system of this scenario, we analysed the aforementioned functional requirements 
and workflows depicted as flow charts. Each workflow should be finally deployed as a group of dynamic 
views orchestrated according to the process logic. Figure 1 shows the incident management flow chat and the 
dynamic view deployed in the “Incidence Register” process.  

 

Figure 1. Incident management flow chart and “Incidence Register” view 

The components of our workflow system can be defined following the MVC approach: variables and 

policies represented as objects make up the model; the workflow process becomes the controller; and the 

view is defined by the user interface elements. A wide range of workflow languages allows defining the 

Model and Controller components. However, having analysed different view definition languages, we 

concluded that none of them was optimized for workflow environments. This was the main motivation of our 

approach, the creation of a view definition language called SFDL, which allows the dynamic generation of 

user interfaces and can be easily integrated in any workflow execution engine.  

Beyond the formal specification of the language SFDL, we propose an integration architecture completely 

compatible with the WfMC reference model, focusing on those entities and interfaces found more relevant 

for this scenario. The developments have been made and validated with OpenWFE as a base; nevertheless, 

there is the strong requirement of guaranteeing a high degree of portability to other process definition 

languages. 

4. SFDL: SIMPLE FORM DEFINITION LANGUAGE 

The focus of our work is pointed towards the joint between process definition and modelling tools, and 

the workflow enactment service. Our proposal covers two main aspects, both related to the MVC pattern: 



web form generation, for flexible view generation from the design process itself; and basic operations from 

the language to access the model. This way, a workflow designer can establish not only the interaction 

pattern, but also define the basic interfacing rules for the end-user to trigger all the functionality. 

The developments have been made and validated with OpenWFE as a base; nevertheless, there is the 

strong requirement of guaranteeing a high degree of portability to other process definition languages. 

According to Van Der Aalst (2003), every system has the possibility of executing external functions, be it 

though embedded code, or calling an ad-hoc participant specially coded for that. The latest is the one chosen 

here: the workflow definition language will include special calls to a function-participant which will load 

data from an external file. Data from this file will define: 

 Screens/views for the end-user, i.e. the form-based GUI. 

 Actions/interactions which the end-user can do in each screen. 

 Finally, the functions that will be executed to access the data model, with the results to be 

presented to the user, and the inputs which will be originated from his actions. 

With all this taken into account, a new language has been defined, covering all these aspects in a clear and 

simple way. Additionally, as it will be seen in the following sections, this language can be the base for others 

in the Reference Model, maintaining thus the coherence in all the workflow chain: design, implementation 

and presentation. 

4.1 Language definition  

Simple Form Definition Language (SFDL) is a special purpose language defined taking into account all 

the functional requisites formerly detailed. In particular: 

 It supports a number of web form elements: selectors, tables, choices, input/output fields… 

 It is self-contained: it has all the information needed –components and style- in a single file. 

 Multiple screens per view: a single activity in a workflow can be composed of several screens in 

the client, before sending information back to the server. 

 It can be expressed in a number of markup languages –XML, JSON, YAML- which, while 

completely equivalent in functionality, have their own particularities that make each one of them 

more adequate for a different environment. Moreover, using standard languages simplifies the 

processing load on the server. 

 Supports server-side function execution, to manage the data model from/to the views. 

From the process definition language, OpenWFE, files are loaded with the aid of a special participant 

(Figure 2). 

<participant ref=”load_sfdl_view”  

             external-file=”vista01.sfdlx” /> 

Figure 2. Load of an SFDL file 

Files can be defined in SFDL in one of three possible variants: 

 SFDL-X: with an XML markup, it is adequate for its interoperability among platforms, and 

keeping the same format used for process definitions, and the language used in Interface 2. 

 SFDL-J: using JSON, it is optimized for JavaScript, with a syntax that allows for great 

bandwidth savings (up to 50% compared to XML), and easily parsed. 

 SFDL-Y: defined in YAML, with a very easy indent-based syntax, which can be directly 

translated into JSON. 

4.2 View definition in SFDL 

To define views inside the activities of a workflow a simple label-based schema is used in order to 

indicate the position of each element, its type, value and some parameters which can define more precisely its 

style or functionality. Table 1 summarizes all the fields. 



Table 1. Fields of a view 

Tag Description Values 

type Functionality of the element Label, input_text, text_area, text_block, selector, table, 

dynamic_table, link, attach, checkbox 

params Style of the element halign, width, height, hint… 

value Element value Numerical, alphanumerical, functions 

result Result of the user interaction with the element 

Each element is preceded by a numerical identifier which defines the position which it will have in the 

client screen. As an example, Figure 3 shows the SFDL-Y definition of a label-type field with a value 

obtained from the result of the user-data function. The element will be positioned in coordinates (04, 30). 

- id: 0430  

  type: label 

  value:  

    function-name: user-data 

    attribute-name: telephone 

  params:  

    halign: left 

    width: "60" 

Figure 3. SFDL-Y field definition 

At this point it is important to highlight the fact that all SFDL-* formats are equivalent. Figure 4 shows 

the definition of the same field in SFDL-X (XML), with the particularity that this format, once the function is 

processes, will be identical to the one sent to the client through Interface 2. 

<field> 

  <_> 

   <id> 0430 </id> 

   <type> label </type> 

   <value> 

    <_> 

     <function-name> user-data </function-name> 

     <attribute-name> telephone </attribute-name> 

    </_> 

   </value> 

   <params> 

    <halign> left </halign> 

     <width> 60 </width> 

   </params> 

  </_> 

</field> 

Figure 4. SFDL-X field definition 

It can be seen that SFDL is easily extensible, and the creation of new elements with their parameters is 

quite straightforward. 

4.3 Data model access functions 

One of the most important requirements for SFDL is enabling access to the data from form definitions. In 

our MVC approach, this is done through the controller: functions are invoked from the view, implemented in 

the controller, and access the model which covers all the databases. 

At this point, it is necessary to clarify the two possible ways to execute functions: 

 At workflow processing time, when the workflow engine runs the definition 

 At presentation time, when the form is presented to the end-user 

To handle both behaviours, a mechanism has been defined to call functions both from the OpenWFE 

language and the SFDL definitions, following a functional model. 



4.3.1 Workflow time functions 

Function calls from the definition language have been implemented as references to a special participant, 

being this one the most straightforward method in OpenWFE. Nevertheless, generality of this approach is 

guaranteed in the sense that every language has some way of adding external functions. Keeping in line with 

the example from Figure 4, the function call to obtain the phone number from a user would be the one shown 

in Figure 5: 

<participant ref=”functions”  

             function-name=”user-data” 

             attribute-name=”telephone” 

             out-field=”phone”/> 

Figure 5. Workflow defined function call 

Functions implemented in the engine cover all the basic input/output operations from/to the model and 

databases used in the architecture (LDAP, CMDB): read-attribute, write-attribute, cmdb-out, user-data… 

however, the function definition mechanism, to be described in next section, allows for a nearly trivial 

expansion of the call set. 

4.3.2 Presentation time functions 

Functions to be executed when the user opens a specific view are defined in the same language as that 

view: SFDL, in any of its variants (-X, -J or -Y). Examples are shown in Figure 3 and Figure 4. This 

approach has two positive aspects of great utility: 

 Functions can be nested and, being a functional language, they can be used in any point of the 

SFDL view definition in place of a value 

 There is a single function library in the system, with a single set of call names and parameters 

(i.e. a call interface), so that calls from SFDL are identical to those from OpenWFE, bringing 

consistence to the approach 

5. IMPLEMENTATION AND RECOMMENDATIONS 

From the beginning, the architecture has been optimized to obtain an independent design from workflow 

engine selected. This independence is achieved reducing the coupling with the engine, limiting the 

integration points. Thus, any engine can adopt SFDL with minimal changes. Anyway, in this section we 

impart some recommendations to make an implementation, using our experience as a base. 

Recommendations will go in two directions: first, what is the easiest way that a workflow engine adopts 

SFDL and, secondly, what are the recommended interfaces for interaction with other systems or users. 

First, it is desirable to package all the SFDL executable functions in a common library which must also 

be accessible at workflow process time. Then, it is necessary a module, you can call Function Trigger. Its 

function will be receiving a call function with SFDL syntax and run that function through the common 

function library, returning a result. This Function Trigger module should be accessible at workflow process 

time and presentation time. 

Furthermore, the representation of the workflow engine resources can be done under any format you 

choose, but here there are some guidelines to achieve a standard integration with SFDL. 

Nowadays, web browsers are becoming the standard tool for consuming Internet services, so it is logical 

to create a web-based client application to access to process engine. Use of REST interfaces is recommended 

for the communications with this type of clients. They use HTTP at transport layer, which is native browser 

protocol. Also, they are a kind of light web services that give the server scalability and efficiency. 

One recommended possibility to workflow engine with SFDL support is a REST interface based on Wf-

XML-R. Wf-XML-R is a Wf-XML (Swenson, et al., 2004) adaptation, designed for communication among 

different workflow engines (interface 4 within the Workflow Reference Model of WfMC). But it is possible 

to use Wf-XML-R into communication between engine and clients (interface 2). This is because, according 

to the reference model, all interfaces have a common set of calls within the WAPI, and each one differs from 

others in the particular functions that it adds. Keeping within the common set of functions, there is no 

problem in using a protocol from an interface into another. 



Wf-XML-R represents the resources with Atom and AtomPub. The use of Atom has an important 

advantage: it admits extensions easily. Consequently, a resource representation with basic Atom can be 

complemented with extensions to accommodate the nuances every resource has. That is, if a resource cannot 

be adequately described with the basic Atom protocol, extensions can be created which allow the complete 

representation. 

The Atom extension system is based on XML namespaces (Bray, et al., 2006). Each extension creates a 

new namespace, where new tags are admitted. As the representation of the necessary variables for the 

generation of dynamic forms is beyond the scope of Atom and Wf-XML-R, a new extension, and its related 

namespace, was created for SFDL support into Atom. With this extension all new information is inside the 

v:current_view tag. This tag accepts two attributes: 

 Type: SFDL-X, SFDL-J, HTML, XFORM. This attribute specifies the format of the contained 

form. It accepts a variety of formats to make more versatile this extension. 

 Screen_id: it is the identifier of screen witch belong the contained fields. Thanks to this attribute 

it is possible to support multiple screens. 

Within the label v:current_view  there will be the elements that make up the form. We recommend the 

usage of SFDL-X in this scenario because of its perfect integration with XML and Atom (see Figure 6) 

<entry 

   xmlns = "http://www.w3.org/2005/Atom" xmlns:g = "http://geobpms.geobliki.com/1.0" 

   xmlns:v = "http://localhost:3000/scheme"> 

  <id>tag:localhost,2005:WfElement/1</id> 

  <link href="http://localhost:3000/workitems/2.atom" type="application/atom+xml" rel="self"/> 

  <author><name> bob </name></author> 

  <title type="text"> Vacation Request </title> 

  <updated>2008-09-01T16:14:20Z</updated> 

    <g:item_type> workitems </g:item_type> 

  <v:current_view type=”sfdl-x” screen_id=”1”> 

    [fields in SFDL-X] 

  </v:current_view> 

<entry> 

Figure 6. SFDL-X representation into Wf-XML-R 

6. CONCLUSION 

The result of our investigation has been the specification of a new dynamic view definition language, 

SFDL, optimized for workflow engines. Our architectural design, based on the MVC paradigm, has allowed 

us to fulfil all the initial requirements, and has been validated, leading to significant gains in productivity. 

Furthermore, it provides an improved communication between workflow systems and users.  

Our work is based on widely used standards and open proposals, through the usage of protocols such as 

REST, Wf-XML-R and Atom, and using XML, JSON and YAML as starting points for the definition of the 

view in SFDL. On the one side, through workflow definitions –our controller-, a workflow engine can now 

generate dynamic forms with enhanced usability, and the possibility of interacting with web services and the 

database model. On the other side, a user with a web browser can interact with the workflow system, and the 

model, using the dynamic forms. 

The proposed design has received much feedback, because it has been validated with a real banking 

scenario. It has allowed some huge features. Among these, one of the most important is providing workflow 

designers with the means for including views specification into their process definitions. Also, it has allowed 

establishing a set of data-access methods into the language to ensure that the workflow is dynamic, accessing 

to the full data-model offered in the environment. Finally, it keeps it simple enough not to depart with the 

Reference Architecture (e.g. by reusing protocols such as Wf-XML-R), not sacrificing portability (by not 

introducing harsh modifications tied to a specific engine); and maintaining the flexibility and extensibility 

which are essential in this kind of project. This way, we recommend the use of these validated formats and 

architectures, within scenarios with similar requirements. 

Finally, it is important to emphasize that tools are being developed under GPL with the purpose of 

facilitating and popularizing the use of SFDL. A graphical tool to aid in the design of views with SFDL-* is 

already available. It can be used for integration into workflows, or for more generalist uses (such as web 

applications). Furthermore, a Ruby gem called “yaxml” (Moreno, 2009) is also offered, to facilitate the 



processing of SFDL-X in this scripting language. These are only the initial steps towards completing a set of 

tools that facilitate the adoption of the new definition language proposed in this article. 

ACKNOWLEDGEMENT 

This work has been supported by the ITECBAN project, which is sponsored by the CDTI and the Spanish 

Ministry of Industry, Tourism and Commerce. The authors would like to express their gratitude to INDRA 

Sistemas S.A. (http://www.indra.es/) for their invaluable contribution to this work. 

REFERENCES 

Andrews, T. et al. 2003, "Business process execution language for web services, version 1.1", Standards proposal by 

BEA Systems, International Business Machines Corporation, and Microsoft Corporation.  

Ben-Kiki, O. et al. 2005, YAML Ain't Markup Language (YAML™) Version 1.1. Available: http://www.yaml.com/ [2010, 

January].  

Bray, T. et al. 2006, 16 August 2006-last update, Namespaces in XML 1.1. Available: http://www.w3.org/TR/xml-

names11 [2010, March].  

Coenraets, C. 2003, "An overview of MXML: The Flex markup language", Adobe-Developer Center.  

Crockford, D. 2006, "JSON: The fat-free alternative to XML", Proceedings of XML.  

Dubinko, M. et al. 2003, "XForms 1.0", W3C Recommendation, vol. 14.  

Fielding, R.T. 2000, Architectural styles and the design of network-based software architectures, University of 

California, Irvine.  

Hickson, I. & Hyatt, D. 2009, , HTML 5: A vocabulary and associated APIs for HTML and XHTML. Available: 

http://dev.w3.org/html5/spec/ [2009, March].  

Hollingsworth, D. 1994, Workflow management coalition: The workflow reference model, Workflow Management 

Coalition.  

Krasner, G.E. & Pope, S.T. 1988, "A cookbook for using the model-view controller user interface paradigm in Smalltalk-

80", Journal of Object-oriented programming, vol. 1, no. 3, pp. 49.  

Moreno, D. 2009, The YAXML Module Reference. Available: http://yaxml.rubyforge.org/ [2010, April].  

Moreno, D. et al. 2009, The SFDL definition. Available: http://sfdl.dit.upm.es/ [2010, February].  

Sayre, R. 2005, "Atom: The standard in syndication", IEEE Internet Computing, vol. 9, no. 4, pp. 71-78.  

Swenson, K.D. et al. 2004, Wf-XML 2.0-XML Based Protocol for Run-Time Integration of Process Engines.  

Van Der Aalst, W. et al. 2003, "Workflow patterns", Distributed and parallel databases, vol. 14, no. 1, pp. 5-51.  

Wohed, P. et al. P. 2009, "Open Source Workflow Systems" in Modern Business Process Automation Springer Berlin 

Heidelberg, pp. 401-434.  

Workflow Management Coalition 2002, XML Process Definition Language (XPDL), Lighthouse Point, Florida, USA.  

Zukowski, M. et al. 2008, A RESTFul Protocol for Run-Time Integration of Process Engines.  

 

http://www.yaml.com/
http://www.w3.org/TR/xml-names11
http://www.w3.org/TR/xml-names11
http://dev.w3.org/html5/spec/
http://yaxml.rubyforge.org/
http://sfdl.dit.upm.es/

